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Introduction

Degenerate SDE?

We consider the following degenerate stable-driven SDE:

dX! = (al'X1+ al?X24 -4 ap"IXITN 4 al "X ) dt + o(t, X,- )dZ,
dX2 = 1X1+ a2 X2+ 4 a"TIX T 4 27X ) dt
dX3 = (at’2X3+ e @"TIX T 4 2 XD ) dit
dXp = (a Xt apnxp ) ot
(1)

with initial condition Xo = x € R", and where
o Z is an R? valued symmetric « stable process (a € (0,2)),
e 0: R, X R — R @ RY, Holder continuous, uniformly elliptic,
bounded.
o av/:R, - RI®RY,
o for x € R", we denote x = (x!,---,x"), with x' € R¥.
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Introduction

Motivation

Two examples.

@ For n = 2, the pricing of the Asian option in jump diffusion models.
t t
Xt = x! +/ aiXlds —|—/ o(s, Xs- )dZs
0 0

X¢

t
%+/£ﬁ$
0

@ In Physics, a system of perturbated oscillators:

1$1g <l
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Introduction

The Stable Process

@ The Lévy measure factorizes as v(dz) = Clj‘%u(di) and its

Fourier transform writes:

B (¢02) e (¢ [ p.lulds).

@ When p the spectral measure is non degenerate, the density exists
and we have the estimates:

_d _d
t7 o t—a
d+o
1+ 4]
ta
e When |z| < t, we say that the diagonal regime holds, and:
_d _d
ct” o < pz(z) < Ct =.
© When |z| > ta we say that the off-diagonal regime holds, and
t t
Clz‘dJra < pz(2) < C‘Z|d+oc'

4/19



Introduction

Related works

o In the case n =1 and « = 2, the brownian estimate under uniform
elliptic setting is known from Friedman 1964 [3].
@ When n =1, Kolokoltsov in 2000 [4] showed that for a stable
diffusion:
d d

(s—t)= (s—t)=
1_|_ |y_X‘ 1_|_ |y_X‘
(s—t)a (s—t)a

@ When « = 2, Delarue and Menozzi in 2010 [2]. For the brownian
chain, the estimate holds:

Q

C’H*f%®@<—CKT§t Yy — Stun|)
< p(t;s,x,y) <
—1

ct"s exp (—Cil |(Ts_ (v — Rse(x)) |2> .
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Introduction

o Consider the simple case: dX; = (CI) 8> X, dt + <d§t> .

@ This writes:
Xsl X1 + st

X52 = Xo +Sx1 + / tht.
0

@ The first component is at scale s/, the second is at scale s/,
@ We can put all the component at the same scale by normalizing by

saly 0
Ta = 1 .
s < 0 51+a/d>

— In the degenerate framework, the typical behavior is given by

ly' — Rix|

i
o

y? — R2x|
sits

|(']I‘?)_1(y— Rsx)| = +

S
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Introduction

Hypotheses [H]

[H-1]:

[H-2]:

[H-3]:

[H-4]:

(Hélder regularity) 3H > 0, n € (0,1], Vx,y € R" and Vt > 0,
lo(t,x) —o(t,y)l| < Hlx —y|".

(Non degeneracy of the spectral measure)
N, A\x €RY, Vu e RY,

Mot < [ 1) (d) < Aaful”
(Ellipticity) 3¢, ¢ >0, V¢ € R, Vz € R™ and Vt > 0,
clé? < (€ 00™(t,2)€) < cl¢f.
(Hérmander-like condition) 3@, o € R*, V¢ € R™ and Vt > 0,
ERATIL e < (bt 6 < ale
Also, for all (i,) € [1,n]?, |a}’| < @.
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Main Results

Weak Uniqueness

Theorem

Under [H], the martingale problem associated with the generator of the
degenerate equation (1) admits a unique solution, i.e.: Yx € R", 31 P
probability measure on Q = D(R,,R"™) such that

Vf € Cg(Ry x R R),

t
P(Xo =x)=1 and f(t,Xt)—/ (Ou+Ly)f(u, X,)du is a P- martingale.
0

Hence, weak uniqueness holds.
The associated semigroup is strong Feller.
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Theorem (Density Estimates)

Under [H], the the unique weak solution of (1) has for every s > 0 a
density. Let Rs; be the resolvent of the deterministic ODE, and let
d=1and n=2.

For fixed T,K >0,3C >1, s.t. V(x,y) € (R®)2,V0<t<s< T,

p(t,s,x,y) < Cpa(t,s, x,y) (1 + log (K v ‘(T;Lt)’l(y - Rs,tX)D) ,

where
(s — )" 3-(1+2)

F_’a(LS,XJ) = Ca

VR L R T
K+ y s, t Y st

(s—t)a (s—t)*a

Also, when |(T_ )7 (y — Rs,ex)| < K,

p(t,s,x,y) > C (s — )&~ (1+3),
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The Frozen Equation and The Parametrix Series

The Frozen process

The proxy is constructed as follows:
o let T > 0 arbitrary deterministic time,
o let y € R" final freezing point,

recall R 7(y) satisfies & Ry 7 = AsRs, 7, with Ry 7 = g in
Rnd ® th_
@ We define the frozen process as follows:

dXIY = AXTVds+ Bo(s,Rs1(y))dZs,

)N(OT’y = X,
o We follow the deterministic system backwards.
o We set o(u, Ry, 7(y)) = ou.
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The Frozen Equation and The Parametrix Series

Fix (t,x) € [0, T] x R™. The Frozen Process X+ starting from x at
time t writes:

S
XoTy = Rs.ex +/ Rs,uBo,dZ,,

t

and has a density pl ¥ (t, s, x, z), that satisfies the bounds:

C_ll_)a(t,S,X,Z) < ij;-)y(t)SaX)Z) < C[_)a(t75,X7Z),

where

det(T2_,)~ !
Pa(t,s,x,y) = C )

"RV (T2 )My — Reex) )
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The Frozen Equation and The Parametrix Series

The Parametrix Series

Assume first that p(t,s, x,z) = P(Xs € dz|X; = x) exists and is smooth.
We set f)a(t757X7 Z) = ﬁZ’Z(t,&X,Z).

-
(e, Toxy) = Bt Toxoy) = [ dr0, [ plerox2)p(r. T.2.y)az
¢ nd
Differentiating formally under the integral:
T
Pt Toxy) = Bult Toxy) = [ dr [ orplt.rix 2)pu(r, Tz, y)dz
t Rnd

-
+/ dr / p(t, 7, x,2)07Pa(T, T, z,y)dz
¢ nd
Now, from Kolmogorov's equation:

an(t7T7X,Z) = Lj-p(ta TaXaZ)7 aTﬁa(T7 T7Z,y) = _ZTﬁ(x(T7 T,z,y).
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The Frozen Equation and The Parametrix Series

Thus,
p(t, T,x,y) — Palt, T,x,y) = /C/T/ p(t, 7, x,2)pa(T, T, z,y)dz
Rnd
—/ dr / p(t,7,x,2) L po(7, T, 2, y)dz
t Rnd

Taking the adjoint in the first integral yields:
p(t, T,x,y) = Palt, T,x,y)

/ dr / dzp(t,T,x, z) ( ZT)f)a(T, T,z,y)
Rnd

H(t,T,z,y)

That is:
p(t, T.x,y) = Pa(t, T,x,y) + p@ H(t, T,x,y),

where we defined the time space convolution:

)
fog(t, Tox,y) = / du / dzf (t, u, x. 2)g(u, T 2,).
t Rnd
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The Frozen Equation and The Parametrix Series

The Parametrix Series

Let P vf(x) = E[f(X7)|X: = x], the transition of the solution of (1),
we have:

Rnd

+0o0o
Perf(x) = /dy (Z po ® HO(t, T,X,y)> fy),
r=0
where H is the parametrix kernel:
VO<t<T, (x,y) € (RY™)? H(t, T,x,y) = (L — L)ba (¢, T, x,y),

Lip(x) = (Ar, V() — /

(s Ba(t )" - o).
Ssd—1 X

L776(6) = (e, Vo) = [ 15 Bt Re ()" - o)

14 /19



Controls on the Iterated Kernels

Lemma (Control of the kernel)

There exists constants C >0, § > 0 s.t. for all T € (0, To] and
(t.x,y) €0, T) x (R™)?:

8§ A |x = Re7(y) ")

H(t, T <
[H(t, Tox, )| < €22t

"T’y(t T,x,y).

and the following bound holds:

/ |H(T, T, z,y)|dz < C(T — T)n(é/\l)fy
nd

@ The last bound reflects the smoothing property (in time) of H.

@ Singularity in % same as in the Brownian setting.

@ This is an important ingredient in the proof of the weak uniqueness.
°

This holds for any dimension d and any number of oscillators n.
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Uniqueness To the Martingale Problem

Uniqueness to the Martingale Problem

Suppose we are given two solutions P! and P? of the martingale problem
associated to (Ls)sec[¢, 7], Starting in x at time t.
Define for a bounded Borel function f : [0, T] x R" — R,

T
Sif = ]Ei (/ f(S,Xs)ds> B i€ {172}7
t

where (X5)see, 77 stands for the canonical process associated with
(Pie1,2-
We denote:

SAf = S'f — S*f.
We show that SAf = 0 for all f : [0, T] x R — R measurable and
bounded, by proving:

HSAH ‘= sup |5Af\ =0.
[floo<1
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Uniqueness To the Martingale Problem

Exploiting the fact that (P');c1,2) are solutions to the martingale
problem, we have Vf € C3'*([0, T) x R™, R):

f(t,x)+E (/T(as + Ls)f(s,Xs)ds> =0, i e {1,2}.

Thus, for all f € Cg([0, T) x R™, R),
s2((0.+L)f) =o.

Inserting the frozen generator:

5A<(8. + Z.)f) +SA((L. - Z.)f) =0

Estimates on p, Estimates on H
We take as f the following function:

"
V(e = [ dy [ dsp e (e e x (s ),
n t

where h is a, arbitrary test function.
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Uniqueness To the Martingale Problem

Applying 8; + L, and introducing the frozen generator L,:

(0 + Le)Ve(t,x) = (9 + Le)We(t,x) + (Le — Le)We(t, x)
- 4

We can show that:
If — —h(t,x), and |I5] <1/2]h|.
e—0
Also, recall that S ((8 + L.)\Ilg) = 0 so that [S2([5)| = |SA ().
We deduce:

|ISAh| = lim |S2IE| = lim [SAE] < IS limsup | /5] < 1/2[|S][|A]sc-
e—0 e—0 e—0

Hence, ||S2|| < 1/2||S?||. But since ||S?| < T — t, we deduce that
IS4 =o.
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Uniqueness To the Martingale Problem
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