Optional semimartingale decomposition and no arbitrage condition in enlarged filtration

Anna Aksamit

Laboratoire d'Analyse & Probabilités, Université d'Evry

Onzième Colloque Jeunes Probabilistes et Statisticiens Forges-les-Eaux 2014 Non-arbitrage up to Random Horizon for Semimartingale Models

T. CHOULLI, A. A., J. DENG and M. JEANBLANC, 2013, http://arxiv.org/abs/1310.1142

Optional semimartingale decomposition and NUPBR condition in enlarged filtration A. A., T. CHOULLI, and M. JEANBLANC, 2014, Working paper

Problem

- $(\Omega, \mathcal{A}, \mathbb{H}, \mathbb{P})$ is filtered probability space where filtration $\mathbb{H} = (\mathcal{H}_t)_{t \geq 0}$ satisfies usual conditions.
- $ightharpoonup X = (X_t)_{t \geq 0}$ is a **price process** of a risky asset, i.e., an \mathbb{H} -semimartingale.
- ▶ $\theta = (\theta_t)_{t\geq 0}$ is an \mathbb{H} -trading strategy, i.e., an \mathbb{H} -predictable process, integrable w.r.t. X in \mathbb{H} . By $L^{\mathbb{H}}(X)$ we denote the set of all \mathbb{H} -trading strategies.
- ▶ $\theta \cdot X = (\int_0^t \theta_s dX_s)_{t>0}$ is a wealth process of \mathbb{H} -trading strategy θ .
- ▶ Consider $\mathbb{H} \in \{\mathbb{F}, \mathbb{G}\}$ with $\mathbb{F} \subset \mathbb{G}$, i.e., for each $t \geq 0$, $\mathcal{F}_t \subset \mathcal{G}_t$. \mathbb{F} represents **regular agent** and \mathbb{G} represents **informed agent**.
- ▶ Assume that there are no arbitrage opportunities in \mathbb{F} . Are there arbitrage opportunities in \mathbb{G} ?

Non-arbitrage condition – NUPBR

▶ Let X be an \mathbb{H} -semimartingale. We say that X satisfies **No Unbounded Profit with Bounded Risk** (NUPBR(\mathbb{H})) if for each $T < \infty$, the set

$$\mathcal{K}_T^{\mathbb{H}}(X) := \left\{ (\theta \centerdot X)_T : \theta \in L^{\mathbb{H}}(X) \text{ and } \theta \centerdot X \geq -1 \right\}$$

is bounded in probability.

▶ The \mathbb{H} -semimartingale X satisfies $\mathsf{NUPBR}(\mathbb{H})$ if there exists \mathbb{H} -local martingale deflator for X, i.e., a strictly positive \mathbb{H} -local martingale L such that LX is an \mathbb{H} -local martingale.

Enlargement of filtration

- ▶ We say that (H') **hypothesis** is satisfied for $\mathbb{F} \subset \mathbb{G}$ if every \mathbb{F} -martingale remains \mathbb{G} -semimartingale.
 - In such a case we are interested in \mathbb{G} -semimartigale decomposition of \mathbb{F} -martingale.
- ▶ **Progressive enlargement**: Jeulin-Yor's result up to random time.
- ► Initial enlargement: Jacod's results on enlargement of filtration and Stricker-Yor's results on calculus with parameter.

Random times

Let τ be a random time, i.e., a positive random variable.

Consider two \mathbb{F} -supermartingales associated to τ :

- lacksquare The process Z_t defined as $Z_t = \mathbb{P}(au > t | \mathcal{F}_t)$
- lacksquare The process \widetilde{Z}_t defined as $\widetilde{Z}_t = \mathbb{P}(au \geq t | \mathcal{F}_t)$

Let A^o be a \mathbb{F} -dual optional projection of the process $A=1\!\!1_{\llbracket au,\infty \rrbracket}$, i.e., for each optional process Y, A^o satisfies

$$\mathbb{E}(Y_{\tau}\mathbb{1}_{\{\tau<\infty\}})=\mathbb{E}(\int_{[0,\infty[}Y_{s}dA_{s}^{o})$$

Denote by m an \mathbb{F} -martingale defined as $m_t = \mathbb{E}(A^o_\infty|\mathcal{F}_t)$. Then

- $ightharpoonup Z=m-A^o$ and $\widetilde{Z}=m-A^o$
- $ightharpoonup \Delta m = \widetilde{Z} Z_{-} \text{ and } \Delta A^o = \widetilde{Z} Z_{-}$

Progressive enlargement of filtration

Progressively enlarged filtration $\mathbb G$ associated with au is defined as

$$\mathcal{G}_t = \bigcap_{s>t} (\mathcal{F}_s \vee \sigma(\tau \wedge s)).$$

Jeulin-Yor's decomposition

For each \mathbb{F} -local martingale X, the stopped process X^{τ} is \mathbb{G} -semimartingale with semimartingale decomposition

$$X_t^{\tau} = \widehat{X}_t + \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} d\langle X, m \rangle_s^{\mathbb{F}}$$

where \widehat{X} is \mathbb{G} -local martingale.

\mathbb{F} -stopping time R

▶ The three sets $\{\widetilde{Z}=0\}$, $\{Z=0\}$ and $\{Z_{-}=0\}$ have the same début which is an \mathbb{F} -stopping time

$$R:=\inf\{t\geq 0: Z_t=0\}$$

lacktriangle We decompose R as $R=\widetilde{R}\wedge\widehat{R}\wedge\overline{R}$ with \mathbb{F} -stopping times:

$$\widetilde{R}:=R_{\{\widetilde{Z}_R=00\}}\quad \text{and}\quad \bar{R}:=R_{\{Z_{R-}=0\}}$$

▶ Notice that $\widetilde{Z}_{\tau} > 0$ and $Z_{\tau-} > 0$.

Optional semimartingale decomposition in $\mathbb G$

For \mathbb{H} -locally integrable variation process V, we denote by $V^{p,\mathbb{H}}$ its \mathbb{H} -dual predictable projection, i.e., an \mathbb{H} -predictable finite variation process such that for each \mathbb{H} -predictable process Y, $V^{p,\mathbb{H}}$ satisfies

$$\mathbb{E}(\int_{[0,\infty[}Y_sdV_s))=\mathbb{E}(\int_{[0,\infty[}Y_sdV_s^{p,\mathbb{H}}).$$

Theorem

Let X be a \mathbb{F} -local martingale. Then

$$X_t^{\tau} = \bar{X}_t + \int_0^{t \wedge \tau} \frac{1}{\bar{Z}_s} d[X, m]_s - \left(\Delta X_{\widetilde{R}} \mathbb{1}_{[\widetilde{R}, \infty[]}\right)_{t \wedge \tau}^{p, \mathbb{F}}$$

where \bar{X} is a \mathbb{G} -local martingale.

Projections in $\mathbb G$ in terms of projections in $\mathbb F$

Lemma

Let V be an \mathbb{F} -adapted process with locally integrable variation. Then, we have

- $lackbox{(}V^{ au})^{
 ho,\mathbb{G}}=rac{1}{Z}1\!\!1_{\llbracket 0, au
 rbracket}$, $(\widetilde{Z}\cdot V)^{
 ho,\mathbb{F}}$.
- ► The process

$$U:=rac{1}{\widetilde{7}}1\!\!1_{\llbracket 0, au
rbracket}$$
 . V

is locally integrable variation process in G and

$$U^{p,\mathbb{G}}=rac{1}{7}\mathbb{1}_{\llbracket 0, au
rbracket}\cdot (\mathbb{1}_{\{\widetilde{Z}>0\}}\cdot V)^{p,\mathbb{F}}.$$

G-local martingale deflator

► Defined G-local martingale

$$\bar{N} = \frac{1}{Z} \mathbb{1}_{\llbracket 0, \tau \rrbracket} \cdot \bar{m}$$

lacktriangleright Then, continuous martingale part and jump process of $ar{N}$ are of the form

$$\begin{split} \bar{N}^c &= \frac{1}{Z_-} \mathbb{1}_{\llbracket 0,\tau \rrbracket} \cdot \bar{m}^c \\ \Delta \bar{N} &= \frac{1}{Z_-} \Delta \bar{m} \mathbb{1}_{\llbracket 0,\tau \rrbracket} = \frac{\Delta m}{\widetilde{Z}} \mathbb{1}_{\llbracket 0,\tau \rrbracket} - {}^{p,\mathbb{F}} \left(\mathbb{1}_{\llbracket \widetilde{R} \rrbracket} \right) \mathbb{1}_{\llbracket 0,\tau \rrbracket} \end{split}$$

Clearly

$$-\Delta \bar{\mathit{N}} \geq \left(-1 + \frac{\mathit{Z}_{-}}{\widetilde{\mathit{Z}}}\right) 1\!\!1_{\llbracket 0,\tau \rrbracket} > -1$$

G-local martingale deflator

Theorem

Let $L = \mathcal{E}\left(-\bar{N}\right)$. Then, for any \mathbb{F} -local martingale X, the process

$$LX^{\tau} - L_{-} \cdot \left(\left(\Delta X_{\widetilde{R}} + \frac{\Delta \langle m, X \rangle_{\widetilde{R}}}{Z_{\widetilde{R}-}} \right) \mathbb{1}_{\left[\widetilde{R}, \infty\right[\right)} \right)_{\cdot \wedge \tau}^{\rho, \mathbb{F}}$$

is a G-local martingale.

Corollary

If X is quasi-left continuous and $\Delta X_{\widetilde{R}}=0$ on $\{\widetilde{R}<\infty\}$, then L is a \mathbb{G} -local martingale deflator for X^{τ} .

Non-arbitrage up to Random Horizon

Theorem

Let τ be a random time. Then, the following are equivalent:

- 1. The thin set $\{\widetilde{Z} = 0 \& Z_{-} > 0\}$ is evanescent.
- 2. \mathbb{F} -stopping time $\widetilde{R} = \infty$.
- 3. For any \mathbb{F} -local martingale X, process $X^{\tau}L$ is a \mathbb{G} -local martingale.
- **4**. For any process X satisfying $NUPBR(\mathbb{F})$, X^{τ} satisfies $NUPBR(\mathbb{G})$.

Proof

- ▶ 2. \Rightarrow 3. Optional decomposition
- $\blacktriangleright \ \ 3. \Rightarrow 2. \ \mathbb{F}\text{-martingale} \ X = 1\!\!1_{\llbracket\widetilde{R},\infty\rrbracket} \left(1\!\!1_{\llbracket\widetilde{R},\infty\rrbracket}\right)^{p,\mathbb{F}} \text{ stopped at } \tau :$

$$X^{\tau} = - \left(\mathbb{1}_{\widetilde{\mathbb{R}}, \infty \widetilde{\mathbb{I}}} \right)_{\cdot, \wedge \tau}^{p, \mathbb{F}}$$

yields that $\widetilde{R}=\infty$

▶ 3. ⇒ 4. Takaoka's characterization, localization and equivalent change of measure

Initial enlargement of filtration

lacktriangleright Initially enlarged filtration $\Bbb G$ associated with random variable ξ is defined as

$$\mathcal{G}_t = \bigcap_{s>t} (\mathcal{F}_s \vee \sigma(\xi)).$$

► Jacod's hypothesis

A real-valued random variable ξ satisfies Jacod's hypothesis if there exists a σ -finite positive measure η such that for every $t \geq 0$ $\mathbb{P}(\xi \in du | \mathcal{F}_t)(\omega) \ll \eta(du) \mathbb{P}$ -a.s.

As shown by Jacod, without loss of generality, η can be taken as law of ξ in the above definition.

Parameterized processes

- ► Stricker-Yor's calculus with parameter
- ▶ Consider a mapping $X: (t, \omega, u) \to X^u_t(\omega)$ with values in \mathbb{R} on $\mathbb{R}_+ \times \Omega \times \mathbb{R}$.
- Let $\mathcal J$ be a class of $\mathbb F$ -optional processes, for example the class of $\mathbb F$ -(local) martingales or the class of $\mathbb F$ -locally integrable variation processes. Then, $(X^u, u \in \mathbb R)$ is called a parametrized $\mathcal J$ -process if for each $u \in \mathbb U$ the process X^u belongs to $\mathcal J$ and if it is measurable with respect to $\mathcal O(\mathbb F) \otimes \mathcal B(\mathbb R)$.

Initial enlargement under Jacod's hypothesis

- For ξ satisfying Jacod's hypothesis, there exists a parameterized positive \mathbb{F} -martingale $(q^u, u \in \mathbb{R})$ such that for every $t \geq 0$, the measure $q^u_t(\omega)\eta(du)$ is a version of $\mathbb{P}(\xi \in du|\mathcal{F}_t)(\omega)$.
- ▶ Semimartingale decomposition Let $(X^u, u \in \mathbb{R})$ be a parameterized \mathbb{F} -local martingale. Then

$$X_t^{\xi} = \widehat{X}_t^{\xi} + \int_0^t rac{1}{q^{\xi}} d\langle X^u, q^u
angle_s^{\mathbb{F}}|_{u=\xi}$$

where \widehat{X}^{ξ} is an \mathbb{G} -local martingale.

\mathbb{F} -stopping times R^u

ightharpoonup For each u define \mathbb{F} -stopping time

$$R^u = \inf\{t : q_t^u = 0\}.$$

- ▶ We have $q^u > 0$ and $q_-^u > 0$ on $\llbracket 0, R^u \llbracket$ and $q^u = 0$ on $\llbracket R^u, \infty \llbracket$.
- ▶ G-stopping time $R^{\xi} = \infty$ a.s. or equivalently $q_t^{\xi} > 0$ and $q_{t-}^{\xi} > 0$ for $t \ge 0$ P-a.s. Let us decompose F-stopping time R^u as $R^u = \widetilde{R}^u \wedge \overline{R}^u$ with

$$\widetilde{R}^u = R^u_{\{q^u_{Bu} > 0\}} \quad \text{and} \quad \overline{R}^u = R^u_{\{q^u_{Bu} = 0\}}.$$

Optional semimartingale deomposition in $\mathbb G$

Theorem

Let $(X^u, u \in \mathbb{R})$ be a parameterized \mathbb{F} -local martingale. Then X^ξ decomposes as \mathbb{G} -semimartingale as

$$X_t^{\xi} = \bar{X}_t^{\xi} + \int_0^t \frac{1}{q_s^{\xi}} d[X^{\xi}, q^{\xi}]_s - \left(\Delta X_{\widetilde{R}^u}^u 1\!\!1_{[\widetilde{R}^u, \infty[\![}]]}\right)^{\rho, \mathbb{F}}|_{u=\xi}$$

where \bar{X}^{ξ} is a \mathbb{G} -local martingale.

Projections in $\mathbb G$ in terms of projections in $\mathbb F$

Lemma

Let $(V^u, u \in \mathbb{R})$ be a parameterized \mathbb{F} -adapted càdlàg process with locally integrable variation. Then,

ightharpoonup The \mathbb{G} -dual predictable projection of V^{ξ} is

$$\left(V^{\xi}\right)^{p,\mathbb{G}}=rac{1}{q_{-}^{\xi}}\cdot\left(q^{u}\cdot V^{u}
ight)^{p,\mathbb{F}}|_{u=\xi}.$$

- ▶ If V belongs to $\mathcal{A}^+_{loc}(\mathbb{F})$, then the process $U := \frac{1}{q^{\xi}} \cdot V$ belongs to $\mathcal{A}^+_{loc}(\mathbb{G})$.
- ▶ The parametrized process $(U^u, u \in \mathbb{R})$ is well defined, its variation is \mathbb{G} -locally integrable, and \mathbb{G} -dual predictable projection of U^{ξ} is given by

$$(U^{\xi})^{p,\mathbb{G}}=rac{1}{q^{\xi}}\cdot\left(\mathbb{1}_{\{q^u>0\}}\cdot V^u
ight)^{p,\mathbb{F}}|_{u=\xi}.$$

\mathbb{G} -local martingale $ar{q}^{\xi}$

Lemma

Take the following G-local martingale

$$\bar{q}^{\xi} := q^{\xi} - \frac{1}{q^{\xi}} \centerdot [q^{\xi}] - q_{-}^{\xi} \centerdot \left(\mathbbm{1}_{\left[\widetilde{R}^{\pmb{u}}, \infty\right[\right]}\right)^{p, \mathbb{F}}|_{u = \xi}.$$

- ► The \mathbb{G} -predictable process $\frac{1}{a^{\xi}}$ is integrable with respect to \bar{q}^{ξ} .
- ► The G-local martingale

$$N:=rac{1}{q^{\xi}}\cdot ar{q}^{\xi}$$

has continuous martingale part and jump equal respectively to

$$\mathcal{N}^c = rac{1}{q_-^{\xi}} \cdot \left((q^{\xi})^c - rac{1}{q_-^{\xi}} \cdot \langle (q^{\xi})^c
angle^{\mathbb{F}}
ight) \quad \Delta \mathcal{N} = rac{\Delta q^{\xi}}{q^{\xi}} - {}^{p,\mathbb{F}} \left(\mathbb{1}_{\left[\widetilde{R}^u
ight]}
ight) |_{u=\xi}.$$

\mathbb{G} -supermartingale $\frac{1}{q^{\xi}}$

Lemma

▶ The process $\frac{1}{a^{\xi}}$ is \mathbb{G} -supermartingale with decomposition

$$\frac{1}{q^\xi} = 1 - \frac{1}{(q^\xi_-)^2} \cdot \bar{q}^\xi - \frac{1}{q^\xi_-} \cdot \left(\mathbb{1}_{\tilde{\mathbb{R}}^u,\infty\mathbb{I}}\right)^{\rho,\mathbb{F}}|_{u=\xi}.$$

Moreover, it can be written as stochastic exponential of the form

$$\frac{1}{q^{\xi}} = \mathcal{E}\left(-\frac{1}{q_{-}^{\xi}}\cdot\bar{q}^{\xi} - \left(\mathbb{1}_{\llbracket\widetilde{R}^{\boldsymbol{u}},\infty\rrbracket}\right)^{\rho,\mathbb{F}}|_{u=\xi}\right).$$

► The process $\frac{1}{q^{\xi}}$ is \mathbb{G} -local martingale if and only if $\widetilde{R}^u = \infty \mathbb{P} \otimes \eta$ -a.s. Then $\frac{1}{q^{\xi}} = \mathcal{E}\left(-\frac{1}{q^{\xi}} \cdot \overline{q}^{\xi}\right) = \mathcal{E}\left(-N\right)$.

G-local martingale deflator

Theorem

Let $L = \mathcal{E}(-N)$. Then, for any parametrized \mathbb{F} -local martingale $(X^u, u \in \mathbb{R})$, the process

$$LX^{\xi} - L_{-} \cdot \left(\left(\Delta X^{\underline{u}}_{\widetilde{R}^{\underline{u}}} + \frac{\Delta \langle q^{\underline{u}}, X \rangle_{\widetilde{R}^{\underline{u}}}}{q^{\underline{u}}_{\widetilde{R}^{\underline{u}}_{-}}} \right) \mathbb{1}_{\left[\!\!\left[\widetilde{R}^{\underline{u}}, \infty\right[\!\!\right]\!\!\right)}^{p, \mathbb{F}} |_{u = \xi}$$

is a G-local martingale.

Corollary

If X is quasi-left continuous and $\Delta X^u_{\widetilde{R}^u}=0$ on $\{R^u<\infty\}$ $\mathbb{P}\otimes\eta$ -a.s., then L is a \mathbb{G} -local martingale deflator for X^ξ in \mathbb{G} .

NUPBR condition for initial enlargement under Jacod's hypothesis

Theorem

The following conditions are equivalent:

- 1. The thin set $\{q^u = 0 < q_-^u\}$ is evanescent η -a.a.
- 2. The \mathbb{F} -stopping time $\widetilde{R}^u = \infty \mathbb{P} \otimes \eta$ -a.s.
- 3. If $(X^u, u \in \mathbb{R})$ is parameterized \mathbb{F} -local martingale, then X^ξ satisfies $NUPBR(\mathbb{G})$. Morover, $\frac{X^\xi}{q^\xi}$ is a \mathbb{G} -local martingale, i.e., $\frac{1}{q^\xi}$ is its \mathbb{G} -local martingale deflator.

Proof

- $ightharpoonup 2. \Rightarrow 3.$ Optional decomposition under Jacod's hypothesis
- ▶ 3. ⇒ 2. Parameterized \mathbb{F} -martingale $(X^u, u \in \mathbb{R})$ with $X^u = \mathbb{1}_{\llbracket \widetilde{R}^u, \infty \rrbracket} \left(\mathbb{1}_{\llbracket \widetilde{R}^u, \infty \rrbracket}\right)^{p, \mathbb{F}}$ "at ξ ":

$$X^{\xi} = -\left(\mathbb{1}_{\llbracket\widetilde{R}^{u},\infty\rrbracket}\right)^{p,\mathbb{F}}|_{u=\xi}$$

yields that $\widetilde{R}^u=\infty$ $\mathbb{P}\otimes\eta$ -a.s.

Optional semimartingale decomposition in $\mathbb G$

Let $\mathbb Q$ be a probability absolutely continuous with respect to $\mathbb P$, and let $\zeta_t = \mathbb E_{\mathbb P}(\frac{d\mathbb Q}{d\mathbb P}|\mathcal F_t), \ S = \inf\{t>0: \zeta_t=0\} \ \text{and} \ \widetilde S = S_{\{\zeta_{S-}>0\}}.$ Let X be a $\mathbb P$ -local martingale. Then, X has decomposition under $\mathbb Q$:

$$X = \bar{X} + \frac{1}{\zeta} \cdot [X, \zeta] - \left(\Delta X_{\widetilde{S}} 1\!\!1_{[\widetilde{S}, \infty[]}\right)^{p, \mathbb{P}}$$

where \bar{X} is \mathbb{Q} -local martingale.

▶ Up to random time τ :

$$X^{\tau} = \bar{X} + \frac{1}{\widetilde{Z}_{s}} \mathbb{1}_{\llbracket 0, \tau \rrbracket} \cdot [X, m] - \left(\Delta X_{\widetilde{R}} \mathbb{1}_{\llbracket \widetilde{R}, \infty \rrbracket} \right)_{\cdot \wedge \tau}^{p, \mathbb{F}}$$

► Under Jacod's hypothesis:

$$X^{\xi} = \bar{X}^{\xi} + \frac{1}{q^{\xi}} \cdot [X, q^{\xi}] - \left(\Delta X^{u}_{\widetilde{R}^{u}} \mathbb{1}_{\llbracket\widetilde{R}^{u}, \infty\rrbracket}\right)^{p, \mathbb{F}}|_{u = \xi}$$

