# Quelques résultats de divisibilité infinie

Pierre Bosch

Université Lille 1

**JPS** 

### Introduction

Questions posées au début de ma thèse :

- La loi de  $\gamma_t^{-a}$  est-elle infiniment-divisible?
- Les densités des lois  $\alpha$ -stables sont-elles HCM?

## Loi infiniment divisible

#### *n*-divisibilité

La variable aléatoire X est n-divisible s'il existe  $(X_1 \dots X_n)$  i.i.d. tel que

$$X \stackrel{\mathsf{d}}{=} X_1 + \cdots + X_n$$
.

Évidemment, poser  $X_i = X/n$  ne convient pas.

#### Divisibilité infinie

La variable aléatoire X est infiniment divisible (**ID**) si elle est n-divisible pour tout n.

# Fonction caractéristique et transformée de Laplace

### Exposant de Lévy-Khintchine

X est **ID** ssi il existe un triplet  $(a, \sigma, \mu)$  tel que

$$\mathbb{E}\left(e^{iuX}\right) = \exp\left(iau - \frac{\sigma^2}{2}u^2 + \int_{-\infty}^{+\infty} (e^{iux} - 1 - iu\tau(x))\mu(dx)\right)$$

où 
$$\tau(x) = x/(1+x^2)$$
 et  $\int_{-\infty}^{+\infty} (1 \wedge x^2) \mu(dx) < \infty$ .

X est **ID** ssi il existe un processus de Lévy  $(X_t)_{t\geq 0}$  tel que  $X_1\stackrel{\mathrm{d}}{=} X$ .

## Fonction caractéristique et transformée de Laplace

Soit X une variable positive.

### Exposant de Lévy-Khintchine

X est **ID** ssi il existe un couple  $(a, \mu)$  tel que

$$\mathbb{E}\left(e^{-\lambda X}\right) = \exp\left(-a\lambda - \int_0^\infty (1 - e^{-\lambda x})\mu(dx)\right)$$

où  $\int_0^\infty (1 \wedge x) \mu(dx) < \infty$ .

X est **ID** ssi il existe un processus de Lévy p.s. croissant  $(X_t)_{t\geq 0}$  tel que  $X_1 \stackrel{d}{=} X$ .

# Exemples faciles

#### ID

- Loi Gaussienne;
- Loi de Poisson;
- Loi Exponentielle, Gamma;
- Loi Géométrique, Binomiale négative;
- Loi de Cauchy;
- $X^2$  où  $X \sim \mathcal{N}(0, \sigma^2)$ .

#### Non ID

- Loi binomiale;
- Loi uniforme;
- Toute loi (non triviale) à support compact.

## Exemples moins faciles

#### ID

- Loi de Pareto  $(x \mapsto c_a/(1+x)^{a+1})$ ;
- Loi de Gumbel  $(X = -\log(L) \text{ où } L \sim \text{Exp}(1))$ ;
- Loi demi-Cauchy (X = |C| où  $C \sim 1/\pi(1+x^2)$ );
- ullet  $X^2$  où  $X\sim \mathcal{N}(m,\sigma^2)$ ;
- $\sqrt{L_1L_2}$  où  $L_1 \perp L_2 \sim \mathsf{Exp}(1)$ .

#### Non ID

- $\sqrt{L}$  où  $L \sim \text{Exp}(1)$ ;
- |X| où  $X \sim \mathcal{N}(m, \sigma^2)$ .

# Opération sur les lois ID

#### Addition, Multiplication, Inverse

- $X \perp Y \mid \mathbf{D} \Rightarrow aX + bY \mid \mathbf{D}$ ;
- $X \perp Y \mid D \Rightarrow X \times Y \mid D$ ;
- $X \text{ ID} \not\Rightarrow 1/X \text{ ID}$ .

#### Subordination de Bochner

Si  $(X_t)_{t\geq 0}$  est un subordinateur et  $(Y_x)_{x\geq 0}$  un processus de Lévy indépendant de  $(X_t)$ . Alors  $(Y_{X_t})_{t\geq 0}$  est un processus de Lévy.

## Application à la loi de Student

Soient  $(B_x)_{x\geq 0}$  le mouvement brownien standard et  $(X_t)_{t\geq 0}$  un subordianteur. Par auto-similarité  $\sqrt{X_1}B_1$  est **ID**.

## Grosswald (1976)

La loi de Student est ID.

C'est une conséquence du fait que :

- $\forall \alpha > 0$ ,  $\gamma_{\alpha}^{-1}$  est **ID**;
  - $T_n \stackrel{\mathrm{d}}{=} c \times \frac{X}{\sqrt{\gamma_{n/2}}}$  où  $X \sim \mathcal{N}(0,1)$ .

## Densité Hyperboliquement Complètement Monotone

### Fonction Complètement Monotone (CM)

$$f:(0,\infty)\to\mathbb{R}$$
 est **CM** si  $\forall n\geq 0,\ (-1)^nf^{(n)}\geq 0.$ 

### Fonction Hyperboliquement Complètement Monotone (HCM)

 $f:(0,\infty)\to\mathbb{R}$  est **HCM** si  $\forall u>0$ ,  $w\mapsto f(uv)f(u/v)$  est **CM** en  $w=v+v^{-1}$ .

Exemples :  $f(x) = x^a$ ,  $f(x) = e^{-ax}$ ,  $f(x) = 1/(x+a)^b$ ,  $b \ge 0$ ,  $f(x) = g(x^a)$  avec  $|a| \le 1$  et g **HCM**, etc.

## Densité Hyperboliquement Complètement Monotone

### Fonction Complètement Monotone (CM)

$$f:(0,\infty)\to\mathbb{R}$$
 est **CM** si  $\forall n\geq 0,\ (-1)^nf^{(n)}\geq 0.$ 

### Fonction Hyperboliquement Complètement Monotone (HCM)

 $f:(0,\infty)\to\mathbb{R}$  est **HCM** si  $\forall u>0$ ,  $w\mapsto f(uv)f(u/v)$  est **CM** en  $w=v+v^{-1}$ .

Exemples : 
$$f(x) = x^a$$
,  $f(x) = e^{-ax}$ ,  $f(x) = 1/(x+a)^b$ ,  $b \ge 0$ ,  $f(x) = g(x^a)$  avec  $|a| \le 1$  et  $g$  **HCM**, etc.

#### Proposition

Une fonction **HCM** se prolonge analytiquement sur  $\mathbb{C} \setminus \mathbb{R}_{-}$ .

# Propriété des variables HCM

### Addition, Multiplication, Inverse, Puissance

- $X \perp Y \text{ HCM} \not\Rightarrow X + Y \text{ HCM}$ ;
- $X \text{ HCM} \Rightarrow 1/X \text{ HCM}$ ;
- $X \perp Y \text{ HCM} \Rightarrow X \times Y \text{ et } X/Y \text{ HCM};$
- $X \text{ HCM} \Rightarrow X^c \text{ HCM}, |c| \ge 1.$

#### Inclusion dans la classe des lois infiniment divisibles

 $HCM \subset ID$ .

Exemple :  $\gamma_t \sim \Gamma(t)^{-1} x^{t-1} e^{-x}$  est **HCM**.

# Infinie divisibilité des puissances d'une variable Gamma

- $\gamma_t^c$  est **HCM** donc **ID** lorsque  $|c| \ge 1$ ;
- $\gamma_t^c$  est non **ID** lorsque  $c \in (0,1)$  car les queues de distributions sont trop légères :

$$\mathbb{P}\left(\gamma_t^c > x\right) = \frac{1}{\Gamma(t)} \int_{x^{1/c}}^{\infty} u^{t-1} e^{-u} du \lesssim e^{-x^{1/c}/2}.$$

### Théorème (2013)

 $\gamma_t^c$  est **ID** lorsque  $c \in (-1,0)$ .

# Infinie divisibilité des puissances d'une variable Gamma

- $\gamma_t^c$  est **HCM** donc **ID** lorsque  $|c| \geq 1$ ;
- $\gamma_t^c$  est non **ID** lorsque  $c \in (0,1)$  car les queues de distributions sont trop légères :

$$\mathbb{P}\left(\gamma_t^c > x\right) = \frac{1}{\Gamma(t)} \int_{x^{1/c}}^{\infty} u^{t-1} e^{-u} du \lesssim e^{-x^{1/c}/2}.$$

### Théorème (2013)

 $\gamma_t^c$  est **ID** lorsque  $c \in (-1,0)$ .

Pour  $c \in (-1,0)$ , on écrit  $\gamma_t^c$  comme une fonctionnelle exponentielle

$$\gamma_t^c \stackrel{\mathrm{d}}{=} \int_0^\infty e^{-Y_s} ds$$

où  $(Y_s)$  est un processus de Lévy spectralement négatif qui dérive vers  $+\infty$ .

## Un problème sur les densités **HCM**

Pour  $\alpha \in (0,1)$  on considère  $Z_{\alpha}$  une variable (strictement)  $\alpha$ -stable définie par  $\mathbb{E}\left(e^{-\lambda Z_{\alpha}}\right) = e^{-\lambda^{\alpha}}$ .  $Z_{\alpha}$  est **ID**.

### Conjecture (Bondesson)

 $Z_{\alpha}$  est **HCM** ssi  $\alpha \leq 1/2$ .

Le cas  $\alpha = 1/n \ (n \ge 2)$ :

$$Z_{1/n} \stackrel{\mathsf{d}}{=} \frac{n^n}{\gamma_{1/n} \times \cdots \times \gamma_{(n-1)/n}}$$

#### Réponse partielle

 $\forall n \geq 2$ ,  $Z_{1/n}$  est **HCM**.



# Un problème sur les densités HCM

Le cas 
$$\alpha = 1/3$$
:

$$Z_{1/3}^{-1} \stackrel{\mathsf{d}}{=} c \times \gamma_{1/3} \times \gamma_{2/3}.$$

### Proposition (2014)

 $\sqrt{\gamma_t \times \gamma_s}$  est **HCM** (donc **ID**) si  $|t - s| \le 1/2$ .

Plus précisément  $\sqrt{\gamma_t imes \gamma_s}$  est **HCM** ssi  $|t-s| \leq 1/2$ .

Donc  $Z_{1/3}^{1/2}$  est **HCM**.

# Rapport indépendant de deux variables $\alpha$ -stables

$$T_{lpha} = \left(Z_{lpha}/ ilde{Z_{lpha}}
ight)^{lpha}$$
 a une densité explicite :

### Lien avec la loi de Cauchy

$$T_{\alpha} \sim \frac{\sin(\alpha\pi)/(\alpha\pi)}{x^2 + 2\cos(\alpha\pi)x + 1}$$
.

#### **Proposition**

 $\forall \alpha \in [0, 1/2], \ \forall |\beta| \ge 1, \ T_{\alpha}^{\beta} \text{ est } \mathbf{ID}.$ 

Conséquence du fait que  $x \mapsto \frac{1}{x(x^2+1)}$  est une fonction **CM** et du théorème suivant :

### Kristiansen (1994)

Si  $X \ge 0$  se factorise en  $X \stackrel{d}{=} Y \times \gamma_2$  avec  $\gamma_2 \perp Y$ , alors X est **ID**.



# Rapport indépendant de deux variables $\alpha$ -stables

### Deux cas particuliers :

- $T_{1/2}\sim \frac{2}{\pi(x^2+1)}$ .  $T_{1/2}^{\gamma}$  est **HCM** ssi  $\gamma\geq 2$ . C'est-à-dire,  $(Z_{1/2}/\tilde{Z_{1/2}})^{\beta}$  est **HCM** ssi  $\beta\geq 1$ .
- $T_{1/3} \sim \frac{c}{x^2 + x + 1}$ . On sait que  $(Z_{1/3}/\tilde{Z_{1/3}})^{1/2}$  est **HCM**, ie.  $x \mapsto \frac{1}{x^{4/3} + x^{2/3} + 1}$  est une fonction **HCM**.

### Théorème (2014)

 $(Z_{\alpha}/\tilde{Z}_{\alpha})^{\beta}$  est **HCM** ssi  $\alpha \leq 1/2$  et  $|\beta| \geq \alpha/(1-\alpha)$ .

### Conjecture de Bondesson renforcée

 $Z_{\alpha}^{\beta}$  est **HCM** ssi  $\alpha \leq 1/2$  et  $|\beta| \geq \alpha/(1-\alpha)$ .



## Quelques éléments de démonstration

#### Théorème

Une fonction  $f:[0,\infty)\to\mathbb{R}$  telle que f(0)=1 est **HCM** ssi elle est la transformée de Laplace d'une loi **GGC**.

$$\{\mathsf{Lois}\; \boldsymbol{\mathsf{GGC}}\} = \overline{\{\mathsf{Covolutions}\; \mathsf{de}\; \mathsf{lois}\; \Gamma\}}$$

#### Théorème

X est **GGC** ssi  $\Phi: \lambda \mapsto \mathbb{E}\left(e^{-\lambda X}\right)$  se prolonge analytiquement sur  $\mathbb{C}\setminus\mathbb{R}_-$ , ne s'annule pas et vérifie

$$\operatorname{Im}(z) > 0 \Rightarrow \operatorname{Im}(\Phi'(z)\overline{\Phi(z)}) \geq 0.$$

Merci pour votre attention!