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One-parameter case

Hurst parameter, h ∈ (0,1).
1 fractional Brownian motion

Rh(t,s) = 1

2
(t2h + s2h −|t − s|2h)

2 fractional Brownian field

Bh
t =

∫
R

(
|t − s|h−1/2 −|s|h−1/2

)
dWs

3 multifractional Brownian motion

t 7→ h(t)
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Multiparameter case

What extensions when t ∈R is replaced by t ∈RN?

Lévy fractional Brownian motion:

Bh
t =

∫
RN

(
‖t − s‖h−N/2 −‖s‖h−N/2

)
dWs

Fractional Brownian sheet: for h = (h1, . . . ,hn),

W h
t =

∫
RN

N∏
k=1

(
|tk − sk|hk−1/2 −|sk|hk−1/2

)
dWs

→ the associated fractional Brownian fields are easily
obtained.
The multiparameter fBm [Herbin & Merzbach 06].
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Multiparameter fBm

(T ,T ,m) is a measurable space, f ,g ∈ L2(T ,m), h ∈ (0,1/2]:

kh : (f ,g) 7→ 1

2

(
m(f 2)2h +m(g2)2h −m((f −g)2)2h

)
is positive definite (where m(f 2) = ‖f ‖2

L2(m)
).

Definition
The multiparameter fBm is a centred Gaussian process with
covariance:

kh(t,s) = 1

2

(
λ([0, t])2h +λ([0,s])2h −λ([0, t]4 [0,s])2h

)
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Applications of multiparameter Brownian fields

Lévy fBm: its sample paths properties, e.g. [Pitt 78],
[Talagrand 95], [Xiao 97], . . .

fractional Brownian sheet: [Kamont 96],
sample paths properties, e.g. [Ayache & Xiao 05]
stochastic calculus, after the seminal work of Cairoli and Walsh
on the Brownian sheet[Cairoli & Walsh 75], extensions to
stochastic integrals in the plane wrt general Gaussian processes
[Dalang 99] [Balan & Conus 13], pathwise approach
[Mishura & Ilchenko 06], and Malliavin approach
[Tudor & Viens 03], . . .

mpfBm, [Herbin & Merzbach 06], [Herbin & Xiao 14] +
articles in preparation.
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Gaussian measures

Definition
A Gaussian measure µ on a separable Banach space E is a measure
under which any continuous linear functional x∗ ∈ E∗ has a Gaussian
law.

Let Hµ be the Cameron-Martin Space of µ, defined as

Hµ = E∗L2(µ)
,

or equivalently, using the canonical embedding S given by:

Sx∗ =
∫

E
x〈x∗,x〉 dµ(x) .

Hµ is densely and compactly embedded into E, and (Hµ,E,µ) is
called a Wiener space.
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Constructing a new AWS

Proposition (see e.g. [Stroock 10])
Let H and Hµ be two separable Hilbert spaces, Hµ being endowed
with a Wiener space structure (Hµ,E,µ). H can also be endowed
with such a structure by isometry, i.e. if u : Hµ→ H is a linear
isometry, (H , ũ(E), ũ∗µ) is a Wiener space.
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Wiener space of the fBm

Standard Wiener space (h=1/2): W =L (B) where B is a
standard Brownian motion considered as a random variable
taking values in C0[0,1].

HW = H1
0 =

{
f (t) =

∫ t

0
ḟ (s)ds, ḟ ∈ L2[0,1]

}
.

For any h ∈ (0,1), the Wiener space of the fBm is given by:

(I h+1/2
0+ (L2[0,1]),C0[0,1],Wh).
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Representation of the fractional Brownian field

On [0,1], the fBm can be represented as [Decreusefond et al. 99]:

Bh,t =
∫

[0,1]
Kh(t,s) dBs ,

where B is a Brownian motion, an for any h, Kh is a L2 kernel.

We proved that there is an operator Kh : Hh → (C0[0,1])∗ such that:

Bh,t =
∫

C0[0,1]
〈Khkh(1[0,t], ·),x〉 dBx ,

where B is a white noise on C0[0,1] of control measure W .
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Denote Hh the Cameron-Martin space of the h-fBM
(=I h+1/2

0+ (L2[0,1]));

Denote H(kh) the Reproducing kernel Hilbert space (RKHS) of
the kernel kh;
For any h ∈ (0,1/2], let uh be a linear isometry between Hh and
H(kh);
This defines a family of AWS (H(kh),Eh,µh), h ∈ (0,1/2];
K̃h = ũT

1/2 ◦Kh ◦u−1
h maps H(kh) into E∗

1/2.

Proposition
For any h ∈ (0,1/2], there exists (H(kh),Eh,µh) a Wiener space and
an operator K̃h of H(kh) → E∗ from which can be defined:

Bh,f =
∫

E
〈K̃hkh(f , ·),x〉 dBx ,

and for any fixed h, {Bh,f , f ∈ L2} is a h-fBm with covariance kh.
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1/2 ◦Kh ◦u−1
h maps H(kh) into E∗

1/2.

Proposition
For any h ∈ (0,1/2], there exists (H(kh),Eh,µh) a Wiener space and
an operator K̃h of H(kh) → E∗ from which can be defined:

Bh,f =
∫

E
〈K̃hkh(f , ·),x〉 dBx ,

and for any fixed h, {Bh,f , f ∈ L2} is a h-fBm with covariance kh.

13 / 29



Denote Hh the Cameron-Martin space of the h-fBM
(=I h+1/2

0+ (L2[0,1]));
Denote H(kh) the Reproducing kernel Hilbert space (RKHS) of
the kernel kh;
For any h ∈ (0,1/2], let uh be a linear isometry between Hh and
H(kh);

This defines a family of AWS (H(kh),Eh,µh), h ∈ (0,1/2];
K̃h = ũT

1/2 ◦Kh ◦u−1
h maps H(kh) into E∗

1/2.

Proposition
For any h ∈ (0,1/2], there exists (H(kh),Eh,µh) a Wiener space and
an operator K̃h of H(kh) → E∗ from which can be defined:

Bh,f =
∫

E
〈K̃hkh(f , ·),x〉 dBx ,

and for any fixed h, {Bh,f , f ∈ L2} is a h-fBm with covariance kh.

13 / 29



Denote Hh the Cameron-Martin space of the h-fBM
(=I h+1/2

0+ (L2[0,1]));
Denote H(kh) the Reproducing kernel Hilbert space (RKHS) of
the kernel kh;
For any h ∈ (0,1/2], let uh be a linear isometry between Hh and
H(kh);
This defines a family of AWS (H(kh),Eh,µh), h ∈ (0,1/2];

K̃h = ũT
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Regularity of the increments

Theorem
There exists a fractional Brownian field indexed over
(0,1/2]×L2(T ,m) whose covariance satisfies: for any η ∈ (0,1/4) and
any compact subset D of L2(T ,m), there exists Cη,D ≡ C > 0 such
that for any f , f ′ ∈ D, and any h,h′ ∈ [η,1/2−η],

E
(
Bh,f −Bh′,f ′

)2 ≤ C1(h−h′)2 +C2 m
(
(f − f ′)2)2(h∧h′)

.
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Application to the continuity of the sample paths

Definition (Totally bounded)
A metric space (S ,d) is totally bounded if for every ε> 0, S can be
covered by a finite number of balls of radius less than ε. The metric
entropy N(ε),ε> 0 is the smallest number of such balls.

Theorem ([Dudley 73])
Let X be a centered Gaussian field indexed by S and define the
pseudo-distance dX by: dX (s, t)2 = E(Xs −Xt)2 ∀s, t ∈S .

Assume that S is dX -compact and that:∫ 1

0

√
log(N(S ,dX ,ε))dε<∞ .

Then X has a continuous version on S .
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Continuity of the fBf

Let dm be the distance on L2(T ,m).

Proposition
Let K be a compact subset with nonempty interior of L2(T ,m). If∫ 1

0

√
logN(K ,dm,ε) dε<∞ ,

then {Bh,f , (h, f ) ∈ (0,1/2]×K } has a continuous modification.
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Hölder continuity of the sample paths

Let h : t ∈ [0,1]N 7→ h(t) ∈ (0,1/2] and define the multiparameter
multifractional Brownian motion from the fBf B on L2([0,1]N ,Leb.)
as:

∀t ∈ [0,1]N , Bh
t = Bh(t),1[0,t] .

The local Hölder regularity of a function f can be measured by:

the pointwise coefficient:

αf (t0) = sup

{
α : limsup

r→0
sup

s,t∈B(t0,r)

|f (t)− f (s)|
rα

<∞
}

,

the local coefficient:

αf (t0) = sup

{
α : limsup

r→0
sup

s,t∈B(t0,r)

|f (t)− f (s)|
|t − s|α <∞

}
.
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Hölder continuity of the sample paths

Theorem
Let us assume that for any t ∈ [0,1]N , h(t) is bigger than its
regularity, i.e. h(t) ≥αh(t). Then, almost surely,

∀t ∈ [0,1]N , αBh (t) = α̃Bh (t) = h(t) .

18 / 29
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Small balls of the fBf

Theorem
Let h ∈ (0,1/2), K a compact set in L2(T ,m). Then, for some k1 > 0,

P

(
sup
f ∈K

|Bh
f | ≤ ε

)
≤ exp(−k1 N(K ,dh,ε)) ,

and if there exists ψ such that for any ε> 0, N(K ,dh,ε) ≤ψ(ε) and
ψ(ε) ≈ψ(ε/2), then for some constant k2 > 0,

P

(
sup
f ∈K

|Bh
f | ≤ ε

)
≥ exp

(−k2 ψ(ε)
)

.

20 / 29



General remarks on the mpfBm

Bh
t will denote a multiparameter fBm. Recall that

kh(t,s) = 1

2

(
λ([0, t])2h +λ([0,s])2h −λ([0, t]4 [0,s])2h

)
.

Bh is not increment stationary;

for a > 0, dBh is equivalent to the Euclidean distance on [a,1]N ;
away from 0, modulus of continuity and Hausdorff measure of
the graph are similar to Lévy fBm.
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Small balls of the multiparameter fBm

Lemma
For h < 1/2, there are constants k1 > 0 and k2 > 0 such that for any
fixed r ∈ (0,1) and ε small enough (compared to r),

exp

{
−k2

r2N

εN/h

}
≤P

(
sup

t∈[0,r]N
|Bh

t | ≤ ε
)
≤ exp

{
−k1

r2N

εN/h

}
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Chung’s LIL of the mpfBm

For every h ∈ (0,1/2), let us denote Mh(r) = supt∈[0,r]N |Bh
t |, r ∈ [0,1].

We will also need ψh(r) = r2h
(
loglog(r−1)

)−h/N .

Theorem
Let h ∈ (0,1/2) and let Mh and ψh be as defined above. Then there
exists a constant c ∈ (0,∞) such that, almost surely:

liminf
r→0

Mh(r)

ψh(r)
=β .
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Ideas of the proof

Find (r(1)
k )k∈N and β(1) s.t.:∑

k
P

(
Mh(r(1)

k )/ψh(r(1)
k ) ≤β(1)

)
<∞

using the small ball probabilities;

Borel-Cantelli lemma.
Find (r(2)

k )k∈N and β(2) s.t.:∑
k
P

(
Mh(r(2)

k )/ψh(r(2)
k ) ≤β(2)

)
=∞

using the small ball probabilities;
Spectral representation: for h < 1/2, there exists ∆h(dx) on E
such that:

‖Sx∗‖2h
H =

∫
E

(
1−cos〈x∗,x〉) ∆h(dx) .

⇒ Bh
t = 1p

2

∫
E

(
1−ei〈k1/2(1[0,t],·),x〉

)
dB∆x
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⇒ Bh
t = 1p

2

∫
E

(
1−ei〈k1/2(1[0,t],·),x〉

)
dB∆x
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Thank you for your attention.
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Reproducing Kernel Hilbert Space

Definition
Let (T ,m) be a complete separable metric space and R a continuous
covariance function on T ×T . There exists a unique Hilbert space
H(R) such that:

1 H(R) is a space of functions from T →R, and for all t ∈ T ,
R(., t) ∈ H(R);

2 the scalar product is given by: ∀t ∈ T ,∀f ∈ H(R),(
f ,R(., t)

)
H(R) = f (t).

This is a separable Hilbert space. It satisfies
H(R) = Span{R(., t), t ∈ T }

‖.‖H(R) .
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Local nondeterminism

For any fixed h < 1/2, the fractional Brownian field is locally
nondeterministic:
Lemma
Let h ∈ (0,1/2). There exists a positive constant C0 such that for all
f ∈ L2(T ,m) and for all r ≤ ‖f ‖, the following holds:

Var
(
Bh

f | Bh
g ,‖f −g‖ ≥ r

)
= C0r2h.
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