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© multifractional Brownian motion
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Multiparameter case

What extensions when t€ R is replaced by te RN?

@ Lévy fractional Brownian motion:

B = f (1= 72 = 01 -N72) dw
RN

@ Fractional Brownian sheet: for h=(ly,..., h;),

N
-1/2 -1/2
wl= | T (1= sl 2 = 1 12) dw
RN =1

— the associated fractional Brownian fields are easily
obtained.

@ The multiparameter fBm [Herbin & Merzbach 06].
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Multiparameter fBm

(T, ,m) is a measurable space, f,ge L*(T,m), he (0,1/2]:

1

is positive definite (where m(f?) = IIfIIiz(m)).

Definition
The multiparameter fBm is a centred Gaussian process with
covariance:
1
knt,9 = 7 (4010, 1" + 10, )*" = A(10, 11 A 10, 5"




Applications of multiparameter Brownian fields

o Lévy fBm: its sample paths properties, e.g. [Pitt 78],
[Talagrand 95], [Xiao 97], ...

o fractional Brownian sheet: [Kamont 96],

e sample paths properties, e.g. [Ayache & Xiao 05]

e stochastic calculus, after the seminal work of Cairoli and Walsh
on the Brownian sheet[Cairoli & Walsh 75], extensions to
stochastic integrals in the plane wrt general Gaussian processes
[Dalang 99] [Balan & Conus 13], pathwise approach
[Mishura & lichenko 06], and Malliavin approach
[Tudor & Viens 03], ...

e mpfBm, [Herbin & Merzbach 06], [Herbin & Xiao 14] +
articles in preparation.
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Gaussian measures
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A Gaussian measure p on a separable Banach space E is a measure
under which any continuous linear functional x* € E* has a Gaussian
law.
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Gaussian measures

Definition

A Gaussian measure p on a separable Banach space E is a measure
under which any continuous linear functional x* € E* has a Gaussian
law.

Let Hy, be the Cameron-Martin Space of u, defined as
— (W)
H,=E )
or equivalently, using the canonical embedding S given by:

Sx* :fx(x*,x) du(x) .
E

H,, is densely and compactly embedded into E, and (Hy, E, p) is
called a Wiener space.



Constructing a new AWS

Proposition (see e.g. [Stroock 10])

Let H and H, be two separable Hilbert spaces, H, being endowed
with a Wiener space structure (Hy, E,u). H can also be endowed
with such a structure by isometry, i.e. if u: H, — H is a linear
isometry, (H, W(E), it i) is a Wiener space.
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Wiener space of the fBm

e Standard Wiener space (h=1/2): # = £(B) where Bis a
standard Brownian motion considered as a random variable
taking values in Gy[0,1].

t
HW=H5={f(r)=f0 flo)ds, fe LZ[O,I]}.
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Wiener space of the fBm

e Standard Wiener space (h=1/2): # = £(B) where Bis a
standard Brownian motion considered as a random variable
taking values in Gy[0,1].

t
HW=H5={f(r)=f0 flo)ds, fe LZ[O,I]}.

@ For any he (0,1), the Wiener space of the fBm is given by:

(F2(12[0,1)), Gol0, 11, #7).
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Representation of the fractional Brownian field

On [0,1], the fBm can be represented as [Decreusefond et al. 99]:
Bh't:f Kh(t,S) st ,
(0,1]

where B is a Brownian motion, an for any h, Kj, is a I? kernel.
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Representation of the fractional Brownian field

On [0,1], the fBm can be represented as [Decreusefond et al. 99]:
Bh't:f Kh(t,S) st ,
[0,1]
where B is a Brownian motion, an for any h, Kj, is a I? kernel.
We proved that there is an operator A&}, : Hy, — (Gy[0,1]1)* such that:
Bh,t:fco ]<*Z//hkh(1[0,t])'))x> dle ’

)

where B is a white noise on Cy[0,1] of control measure #'.

12/29



@ Denote Hj, the Cameron-Martin space of the h-fBM
(= FH2(1210,1D));
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@ Denote Hj, the Cameron-Martin space of the h-fBM
(= Joh:”z(Lz[O,l]));

@ Denote H(kp) the Reproducing kernel Hilbert space (RKHS) of
the kernel ky;

@ For any he(0,1/2], let uy be a linear isometry between Hj, and
H{(kp);

@ This defines a family of AWS (H(kp), Ep, up), he (0,1/2];

o A= u”zojfhou maps H(ky) into E;,

Proposition

For any he (0,1/2], there exists (H(ky), Ep, un) a Wiener space and
an operator %y, of H(ky,) — E* from which can be defined:

Bipe= fE Fnkn(f, ), dBy

and for any fixed h, {Byy,f € I*} is a h-fBm with covariance kp,.
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Regularity of the increments

Theorem

There exists a fractional Brownian field indexed over

(0,1/2] x [2(T, m) whose covariance satisfies: for any ne (0,1/4) and
any compact subset D of L*(T,m), there exists C,p= C>0 such
that for any f,f' € D, and any h, W € [n,1/2—-n],

[E(Bh.f_Bh’,f’)z <Ci(h-HW)P?+G m((f_f/)z)?—(h/\h’) _
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Application to the continuity of the sample paths

Definition (Totally bounded)

A metric space (<, d) is totally bounded if for every € >0, & can be
covered by a finite number of balls of radius less than €. The metric
entropy N(g),e >0 is the smallest number of such balls.
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Application to the continuity of the sample paths

Definition (Totally bounded)

A metric space (&, d) is totally bounded if for every € >0, % can be
covered by a finite number of balls of radius less than €. The metric
entropy N(g),e >0 is the smallest number of such balls.

v

Theorem ([Dudley 73])

Let X be a centered Gaussian field indexed by # and define the
pseudo-distance dx by: dx(s,H? = E(X;— Xp)? Vs te. L.

Assume that & is dx-compact and that:

1
f \Iog(N(, dy, £)) de < 0o .
0

Then X has a continuous version on .
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Continuity of the fBf

Let d,, be the distance on L*(T,m).

Proposition

Let K be a compact subset with nonempty interior of L>(T,m). If

1
f \/logN(K,dp,€) de <oo,
0

then {Bp,r, (h,f) € (0,1/2] x K} has a continuous modification.
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Holder continuity of the sample paths

Let h:te[0,1]N — h(f) € (0,1/2] and define the multiparameter
multifractional Brownian motion from the fBf B on I2([0,1]V, Leb.)
as:

vee(0,11N, BP'=Buyi,, -
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Holder continuity of the sample paths

Let h:te[0,1]N — h(f) € (0,1/2] and define the multiparameter
multifractional Brownian motion from the fBf B on I2([0,1]V, Leb.)

as:
vee(0,11N, BP'=Buyi,, -

The local Holder regularity of a function f can be measured by:
@ the pointwise coefficient:
t —_
ar(fp) =supi a:limsup sup M <oop ,
r—0  s,teB(t,) r¢

o the local coefficient:

t —
af(fp) =supq a:limsup sup M <oob .
r—0 steBy,n 1L~ S¢

17/29



Holder continuity of the sample paths

Let us assume that for any t€ [0,1]1N, h(t) is bigger than its
regularity, i.e. h(t) = ap(t). Then, almost surely,

Vee (0,11,  ap(®) = ag(t) = h(o) .
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e The multiparameter fractional Brownian motion
@ Small balls of the fBf
@ Geometric properties of the mpfBm
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Small balls of the fBf

Let he(0,1/2), K a compact set in L*>(T,m). Then, for some k; >0,

P (sup B} < e) <exp(—ki N(K,dp,¢) ,
feK

and if there exists ¥ such that for any € >0, N(K, dp,€) <y(e) and
w(e) = y(el2), then for some constant ky >0,

P

supIB]’ZI < 6) =exp(—ky w(e) .
feK
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General remarks on the mpfBm

B? will denote a multiparameter fBm. Recall that

() = 5 (400, 102" + A(10, $*" = A(10, 11 A [0, 5)?").

1
2

@ B is not increment stationary;
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General remarks on the mpfBm

B? will denote a multiparameter fBm. Recall that

() = 5 (400, 102" + A(10, $*" = A(10, 11 A [0, 5)?").

1
2
@ B is not increment stationary;

o for a>0, dgn is equivalent to the Euclidean distance on (a,11V:

@ away from 0, modulus of continuity and Hausdorff measure of
the graph are similar to Lévy fBm.

21/29



Small balls of the multiparameter fBm

Lemma

For h<1/2, there are constants k; >0 and k, >0 such that for any
fixed re (0,1) and € small enough (compared to r),

= h =
exp{—kzm} SP( sup |B;| SE) Sexp{—klm}

te[0,rN
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Chung’s LIL of the mpfBm

For every he (0,1/2), let us denote M) = SUP e[,V IB?I, re[o,1].
We will also need (1) = " (loglog(r‘l))_h/N.

Let he (0,1/2) and let M" and W, be as defined above. Then there
exists a constant ce (0,00) such that, almost surely:

.. MM
liminf =
r—0 ’(//h(r)

p.
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Ideas of the proof

e Find (r}cl))ke,\l and W s.t.:
xP (MG Py < BV < 00

using the small ball probabilities;
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Ideas of the proof

e Find (r,(cl))ke,\l and W s.t.:
xP (MG Py < BV < 00

using the small ball probabilities;Borel-Cantelli lemma.
e Find (r}cz))keN and ¥ s.t.:

Y P (M) ynr?) < pP) =0
k

using the small ball probabilities;
@ Spectral representation: for h<1/2, there exists A(dx) on E
such that:

| Sx* IIﬁl:f (1-cos(x™,x)) Adx) .
E

= B? = %L(l _ ei<k1/2(1[o,ny'),x>) d[EB?
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Thank you for your attention.
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Reproducing Kernel Hilbert Space

Definition
Let (T, m) be a complete separable metric space and R a continuous
covariance function on T x T. There exists a unique Hilbert space
H(R) such that:
@ H(R) is a space of functions from T — R, and for all t€ T,
R(,t) e HR);
@ the scalar product is given by: Vte T,Vf e H(R),

(f, RC, D) gy = f (.

This is a separable Hilbert space. It satisfies
H(R) = Span{R(, 0, e T} "™
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Local nondeterminism

For any fixed h<1/2, the fractional Brownian field is locally
nondeterministic:

Let he (0,1/2). There exists a positive constant Cy such that for all
fe L[2(T,m) and for all r< Ifll, the following holds:

Var (B]’Z | BLIf-gll = r) = Gr*h.
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