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Motivation

Why ?

Fractional Brownian motion (fBm) is not a semimartingale for
H 6= 1

2
: interesting theoretical problem.

Popular model in diverse applications: hydrology,
telecommunications, fluid dynamics, mathematical finance.

Rosenblatt process: simplest non-Gaussian Hermite
processes.
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Motivation

20 years of research

Pathwise methods: Lin (1995), Zhäle (1998), Coutin and
Qian (2002), Gradinaru, Nourdin, Russo and Vallois (2005)...

Malliavin calculus: Deucreusefond and Üstünel (1999), Alos,
Nualart and Mazet (2001), Cheredito and Nualart (2005)...

White noise distribution theory: Elliott and Van Der Hoek
(2003), Bender (2003), Hu and Oksendal (2003)...

Isometric construction: Mishura and Valkeila (2000).

Approximation: Carmona, Coutin and Montseny (2001).
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Fractional Brownian motion

Kolmogorov (1940)

Fractional Brownian motion {BH
t } is the unique centered gaussian

process whose covariance function is equal to:

E[BH
t BH

s ] =
1

2
[|t|2H + |s|2H − |t− s|2H].

Mandelbrot (1968)

Let 0< H < 1 and {Bx}x∈R be a Brownian motion.

BH
t =

∫

R

�

(t− x)
H− 1

2
+ − (−x)

H− 1
2

+

�

dBx.
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Multiple Wiener-Itô Integrals

Definition

The multiple Wiener Itô integral is a continuous linear application
from L̃2(Rd) to L2(Ω,F ,P), where L̃2(Rd) is the space of
square-integrable symmetric functions.

Properties

Id(f) = Id(f̃) where f̃ =
1

d!

∑

σ∈Sd
f ◦σ.

E[Ip(f)Iq(g)] = p!< f̃ , g̃> δp,q.

E[(Id(f))2] = d!||̃f ||22
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Dobrushin, Major (1979) and Taqqu (1979)

Hermite processes

Let H ∈ (1
2
, 1). Let {ξn; n ∈ Z} be a Gaussian stationary sequence

with mean zero, unit variance and E[ξ0ξn]≡ n
2H−2

d L(n). Let g be a
function such that E[g(ξ0)] = 0, E[g(ξ0)2]<∞ and d as Hermite
rank. Then:

∀(t1, ..., tp) ∈ R
p
+

� 1

nH

bnt1c
∑

i=1

g(ξi), ...,
1

nH

bntpc
∑

i=1

g(ξi)
�

⇒

�

Id(h
H,d
t1
), ..., Id(h

H,d
tp
)
�

where hH,d
t =

∫ t

0

∏d
j=1(s− xj)

−( 1
2
+ 1−H

d )
+ ds
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Definition

Representation

∀t ∈ R+ XH
t = c(H)

∫

R2

�
∫ t

0

(s− x1)
H
2
−1
+ (s− x2)

H
2
−1
+ ds

�

dBx1
dBx2

where H ∈ ( 1
2
, 1) and c(H) is a normalizing constant such that

E[|XH
1 |

2] = 1.

Properties

Non-Gaussian process.

Same covariance function as fBm⇒ Long-range dependency.

H−δ, δ > 0 ,Hölder continuous.

Not a semimartingale.

Zero quadratic variation.
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Stochastic calculus with respect to the Rosenblatt
process: Russo-Vallois regularization

Tudor 2008

Forward integtal of Y. (continuous) with respect to X.H:

∫ T

0

Ytd
+XH

t = lim
ε→0+

− ucp

∫ T

0

Yt
XH

t+ε− XH
t

ε
dt.

For f ∈ C2(R),

f(XH
t )− f(XH

0 ) =

∫ t

0

f ′(XH
s )dXH

s .
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Stochastic calculus with respect to the Rosenblatt
process: Skorohod type integral

Tudor 2008

∀t ∈ [0, T] ZH
t = c(H)

∫

[0;t]2

∫ t

0

∏2
j=1(

s

xj
)

H
2 (s− xj)

H
2
−1
+ dsdBx1

dBx2

Let {Yt : t ∈ [0; T]} be a square integrable stochastic process.

∫ T

0

YtδZH
t = δ

2(IH(Y)).

If {Yt} sufficiently regular (in the Malliavin sense): upper bound for

the variance of
∫ T

0
YtδZH

t .

Similarly: {
∫ t

0
YsδZH

s } is H−δ Hölder continuous.
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Stochastic calculus with respect to the Rosenblatt process

Itô formula in the divergence sense

For f ∈ C2(R),

f(ZH
t )− f(ZH

0 ) =

∫ T

0

f ′(ZH
t )δZH

t + 2Tr(1)(D(1)f ′(ZH
t ))− Tr(2)(D(2)f ′(ZH

t )).

if the trace terms exist.

Remark, (Tudor 2008)

For f = x3, appearance of a term invovling f
′′′

.

Non-zero cumulants of the Rosenblatt distribution (law of ZH
1 )

appear for f = x2 and for f = x3

What does Itô’s formula look like for general f smooth enough ?
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Hida distributions

Setting

(Ω,F ,P) = (S′(R),F∗,µ).

µ− a.e. ∀t≥ 0 Bt(.) =< .; 1[0;t] >.

<; f >=
∫

R f(s)dBs.

(L2) = L2(Ω,F ,P).

(S)⊂ (L2)⊂ (S)∗.

(S)-transform

Let Φ ∈ (S)∗. For every function ξ ∈ S(R), we define the S-transform of Φ
by:

S(Φ)(ξ) =




Φ; : exp(<;ξ >) :
��

where : exp(<;ξ >) := exp(<;ξ >−
||ξ||2

L2(R)

2
) =
∑∞

n=0
In(ξ⊗n)

n!
∈ (S).
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Hida dristributions

Definitions

Φ �Ψ ∈ (S)∗ defined by:
∀ξ ∈ S(R), S(Ψ)(ξ)S(Φ)(ξ) = S(Φ �Ψ)(ξ).
∀y ∈ S′(R), Dy linear continuous operator from (S) to (S) such
that:

Dy(In(φn)) = nIn−1(y⊗1 φn).

∀y ∈ S′(R),∀Ψ ∈ (S)∗, D∗y linear continuous operator from
(S)∗ into itself such that:

∀ξ ∈ S(R) S(D∗y(Ψ))(ξ) =< y;ξ > S(Ψ)(ξ) = S(I1(y) �Ψ)(ξ)
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(S)∗-differentiability and (S)∗-integrability

(S)∗-derivatives

White noise: Ḃt = I1(δt).

Fractional noise: ḂH
t = I1(δt ◦ (I

H− 1
2

+ )), where I
H− 1

2
+ fractional integral

of order H− 1
2
.

(S)∗-integrability

Y : I→ (S)∗ is integrable if:

∀ξ ∈ S(R), S(Y.)(ξ) is measurable on I.

∀ξ ∈ S(R), S(Y.)(ξ) ∈ L1(I).
∫

I
S(Yt)(ξ)dt is the S-transform of a certain Hida distribution.
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White noise integral and fractional noise integral

Kubo and Takenaka, (1981)

Let {Yt : t ∈ [0; T]} be a non-anticipating stochastic process in
L2([0, T]×Ω). Then,

∫ T

0

YtdBt =

∫ T

0

Yt � Ḃtdt=

∫ T

0

D∗δt
(Yt)dt.

Bender (2003) and Elliott et al. (2003)

Let {Yt; t ∈ [0; T]} be a (S)∗ stochastic process which is (S)∗ integrable.
The fractional noise integral of Y. over [0, T] is defined by:

∫ T

0

YtdBH
t =

∫ T

0

Yt � ḂH
t dt=

∫ T

0

D∗
δt◦I

H− 1
2

+

(Yt)dt.
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Rosenblatt noise integral

Rosenblatt noise

It is defined by:

∀t> 0 ẊH
t = d(H)I2(δ

⊗2
t ◦ (I

H
2
+ )
⊗2)

and characterized by:

∀ξ ∈ S(R) S(ẊH
t )(ξ) = d(H)(I

H
2
+ (ξ)(t))

2

Rosenblatt noise integral

Let {Yt; t ∈ [0; T]} be a (S)∗ stochastic process which is (S)∗ integrable.
The Rosenblatt noise integral of Y. over [0, T] is defined by:

∫ T

0

YtdXH
t =

∫ T

0

Yt � ẊH
t dt=

∫ T

0

(D∗p
d(H)δt◦I

H
2
+

)2(Yt)dt
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Itô formula

Theorem (Arras 2013)

Let (a, b) ∈ R∗+ such that a≤ b<∞. Let F be an entire analytic function
of the complex variable verifying:

∃N ∈ N,∃C > 0,∀z ∈ C |F(z)| ≤ C(1+ |z|)N exp(
1
p

2bH
|ℑ(z)|)

Then, in (S)∗:

F(XH
b )− F(XH

a ) =

∫ b

a

F(1)(XH
t ) � ẊH

t dt

+
∞
∑

k=2

�

Hκk(X
H
1 )

∫ b

a

tHk−1

(k− 1)!
F(k)(XH

t )dt

+ 2k

∫ b

a

F(k)(XH
t ) � ẊH,k

t dt
�
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Comments

Remarks

All the derivatives of F are involved.

Non-zero cumulants, κk(XH
1 ), appear in the formula.

Appearance of {XH,k
t : t≥ 0} defined by:

XH,k
t =

∫

R

∫

R
(...((fH

t ⊗1 fH
t )⊗1 fH

t )...⊗1 fH
t )

︸ ︷︷ ︸

k−1×⊗1

(x1, x2)dBx1
dBx2

where fH
t is the kernel of the Rosenblatt process.
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Proof

S(F(XH
t ))(ξ) =

∫

S′(R)
F((XH

t )(x))dµξ(x) =
1

2π
<F (F);Eµξ[exp(i.XH

t )]> .

By Paley-Wiener theorem, F (F) has compact support contained in
{θ : |θ | ≤ 1p

2bH }.
Thus, we need to know the behaviour of θ → Eµξ[exp(iθXH

t )]
around the origin.
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Proof

Lemma

Let ξ ∈ S(R) and t> 0. We have (for θ being small enough):

Eµξ[exp(iθXH
t )] = exp(iθ < fH

t ;ξ⊗2 >)

×exp

 

+∞
∑

k=2

(iθ tH)k

k!
κk(X

H
1 )

!

×exp

 

+∞
∑

k=2

(2iθ)kS(XH,k
t )(ξ)

!

Differentiate S(F(XH
t ))(ξ) with respect to t. Intervene duality bracket and

differentiation. Integrate over [a, b].

Benjamin Arras Stochastic calculus with respect to the Rosenblatt process



Introduction
Hermite processes
Rosenblatt process

White noise distribution theory

Stochastic analysis tools
Stochastic calculus

End

THANK YOU !
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Comparison with other approaches

Theorem (Arras 2013)

Let {Yt; t ∈ [0; T]} be a stochastic process such that

Y ∈ L2(Ω;H )∩ L2([0, T];D2,2) and E[
∫ T

0

∫ T

0
||D2

s1,s2
Y||2H ds1ds2]<∞

where

H = {f : [0; T]→ R;

∫ T

0

∫ T

0

f(s)f(t)|t− s|2H−2dsdt<∞}.

Then, {Yt} is Skorohod integrable and (S)∗-integrable with respect to the
Rosenblatt process, {ZH

t }t∈[0;T], and we have:

∫ T

0

YtδZH
t =

∫ T

0

Yt � ŻH
t dt
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