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Likelihood

Statistics in most of its flavors is based on the likelihood function

f (x |θ)

In complex models however
this could be impossible to compute for a number or reasons

• Give up?

• Simplify our model?

• Approximate Inference!
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Estimate f (x |θ0) ?

Approximate the likelihood with a MC estimator like

f̂ (x |θ0) =
1

M

M∑
i=1

I{yi=x}(yi )

where yi are simulated from f (·|θ0).
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Estimate f (x |θ0) ?

Approximate the likelihood with a MC estimator like

f̂ (x |θ0) =
1

M

M∑
i=1

I{yi=x}(yi )

where yi are simulated from f (·|θ0).

Still this is a point-wise (very naive) estimation...
Bayesian statisticians are better with samplers!
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Importance Sampling

For a LOT of js

• Sample from the prior θj ∼ π(·)
• Weight with f (x |θj)

The resulting weighted sample has posterior law π(θ|x)
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not-yet-Approximate BC

For a LOT of js

• Sample from the prior θj ∼ π(·)
• Weight with f̂ (x |θj)

The resulting weighted sample has posterior law π(θ|x) ?

The answer is (surprisingly?) YES!

Even in the ”limit” with M = 1 s.t. f̂ (x |θ) = I{y=x}(y) !

∫
{y=x}

π(θ)f (y |θ)dy = π(θ)f (x |θ) ∝ π(θ|x)
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not-yet-Approximate BC

For a LOT of js

• Sample from the prior θj ∼ π(·)
• Weight with f̂ (x |θj)

The resulting weighted sample has posterior law π(θ|x) ?

The answer is (surprisingly?) YES!

Even in the ”limit” with M = 1 s.t. f̂ (x |θ) = I{y=x}(y) !

The ”only” problem being the event
I{y=x}(y) having null probability in general.



Likelihood ABC Summary Selection Results

Approximate Bayesian Computation

Tavaré et al. (1997)

In the 90s some population geneticists decided
not to be let down from this triviality and introduced:

• a tolerance level ε s.t. f̂ (x |θ) = I{ρ(S(y),S(x))≤ε}(y)

• where S(x) as a summary statistics of the data x

finally introducing the approximations we are interested in!
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S(·) ← – → ε

In an efficient sampler:

• S(·) needs to be high dimensional to retain informations

• this push ε to be fairly large to retain some of the samples
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Trade-Off

S(·) ← – → ε

In an efficient sampler:

• we want ε→ 0 to be not quite far from the truth

• S(·) needs to be low dimensional and hence
we’re going to lose some information
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The problems associated with ε are being currently talked by
relying on more efficient samplers, especially sequential ones.
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Approximating better

The problems associated with ε are being currently talked by
relying on more efficient samplers, especially sequential ones.

When the high complexity of the data prevents comparison directly
between raw data, choosing the correct set of statistics is on the

other hand still an open and highly debated subject.
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π(θ|x) = π(θ|S(x))

Sufficiency is HARD to obtain and test.

(outside the exponential family)
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Sufficient Statistics

While a sufficient statistics clearly solves our problems
π(θ|x) = π(θ|S(x))

Sufficiency is HARD to obtain and test.

Typically an expert of the field chooses some statistics which are
likely to contain most of the information about the given data but

could be high dimensional, redundant and still un-sufficient.
(bref: not an easy task!)
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Dimension Reduction

The better technique is to choose the set conservatively and then
trim it down to the most efficient subset.
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Dimension Reduction

Let s be the set of summaries and define u ⊆ s the minimal subset
that it contains the whole information in s

Information is sadly not a universal concept..
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State of the Art

Some efforts in this direction are described in Blum et al. (2013):

• Best subset selection techniques, which select a subset u
based on some criterion

• Projection techniques that aim at reducing the dimension by
combining statistics into a new (orthogonal) set in order to
reduce collinearity, like PCA or PLS.
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State of the Art

Some efforts in this direction are described in Blum et al. (2013):

• Best subset selection techniques, which select a subset u
based on some criterion

• Projection techniques that aim at reducing the dimension by
combining statistics into a new (orthogonal) set in order to
reduce collinearity, like PCA or PLS.

Both these methods have their drawbacks,
BSS are generally based on an arbitrary criterion while

PLS and PCA rely on searching just for linear relations between
variables.
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Let’s combine them

Define information as Thomas would:

π(θ|u) = π(θ|s) ← π(θ|u) ⊥⊥ p(s \ u)

So PLS isn’t a bad idea! But still relies on the normal assumption.
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RKHS

Zhang et al. (2012) and Fukumizu et al. (2008)
formally derived a conditional independence test statistics along

with its asymptotic distribution under the null using the
conditional cross-covariance operator that lies in the RKHS

induced by a (characteristic, usually guassian) kernel.
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RKHS

Zhang et al. (2012) and Fukumizu et al. (2008)
formally derived a conditional independence test statistics along

with its asymptotic distribution under the null using the
conditional cross-covariance operator that lies in the RKHS

induced by a (characteristic, usually guassian) kernel.

H0 : π(θ|u) ⊥⊥ p(s \ u)
s and θ are sampled for ABC!
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About the idea

The cross-covariance operator ΣY ,X on the RKHS from HX to HY

is defined by:

< g ,ΣY ,X f >= EX ,Y [f (X )g(Y )]− EX [f (X )]EY [g(Y )]

for all f ∈ HX and g ∈ HY and the conditional cross-covariance
operator of (X ,Y ) given Z is then defined as:

ΣX ,Y |Z = ΣY ,X − ΣY ,ZΣ−1
Z ,ZΣZ ,X

The idea is that checking for correlation of functions in the RKHS
translate in testing for non-linear correlation (dependence) of the
conditional distributions in the original space and hence provides

more robust result with respect to PLS.
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Computational Burden

The operation involved are dominated by matrix inversions which
complexity is O(n3)

n being the size of the sample used for testing

Proceeding incrementally for single component of θ might lead
quick to acceptance and

Greedy procedures have also been developed by minimizing
Tr(ΣY |Z )!



Likelihood ABC Summary Selection Results

Results in IID

We tested the procedure on IID examples: Pois(λ) and N (µ, σ2)
s = (µ1, µ2, µ2, µ4,min,max, q0.25, q0.5, q0.75,N (0, 1), T3)

(permuted at each repetition)

We repeated 100 times for each model and successfully recovered
the sufficient statistics in over 90% of the trials, using a random

subsampling with size B = 800. In the remaining 10% of the cases
the statistics either was often composed of the sufficient set plus a

(few) other statistics.

Testing for (unconditioned) independence further reduced the size
of u prior to the intensive analysis by removing in 100% of the

cases the two random ancillary vectors.
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Results in Drug Resistent Tubercolosis

Lastly we examined a Markov processes for epidemiological
modeling with 4 parameters and 11 statistics.

Replicated information in the form of (often non-linear)
dependence between some statistics is expected. In the original
work the authors show in fact that PSL is outperformed by the

non-linear NNet, that the best performing methods are among the
best subset techniques and notably that every dimension reduction

method result in a lower mean RSSE that using the whole s set.
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Results in DRT

RSSE =
N∑
j=1

(
||θj , θtrue ||2

)1/2

The relative gain in mean RSSE is 20%, as good as the best
performing AIC/BIC best subset selection method in

Blum et al. (2013).
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Results in DRT

mean RSSE =
1

m

m∑
i=1

N∑
j=1

(
||θj , θi ||2

)1/2

The relative gain in mean RSSE is 20%, as good as the best
performing AIC/BIC best subset selection method in

Blum et al. (2013).
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Results in DRT

The relative gain in mean RSSE is 20%, as good as the best
performing AIC/BIC best subset selection method in

Blum et al. (2013).

”Why bother then?” you may ask, but I assure you AIC/BIC have
been proven weak in other counter-examples.
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Conclusion and Future Perspectives

We derived a BSS method based on widely accepted notions of
conditional independence and ”Bayesian sufficiency” which is

general enough to have almost no assumptions. The procedure is
shown to work well on both synthetic and real data.

We are also investigating further properties of ABC, including:

• How does reducing the dimension of s impact regression
adjustment? Can regression substitute rejection/weighting?
Note that out-of-sample problems here does not (practically) apply!

• Is regression equivalently inducing some ellipsoidal rather than
spherical distance? More importantly, is non-linear regression
inducing blobs around S(x)?
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Thank you for your attention!
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