| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |

# Estimation of deformation between distributions by minimal Wasserstein distance

Hélène Lescornel

Institut de Mathématiques de Toulouse

Colloque Jeunes Probabilistes et Statisticiens - 7/04/2014



Examples

## Summary

#### Introduction

#### The model

Statistical framework The estimators

#### Consistency

M-estimation Result

#### Convergence in distribution

New framework Idea of proof

#### Examples

| Introduction | The model<br>000<br>00 | Consistency<br>0<br>00 | Convergence in distribution<br>00<br>0 | Examples |
|--------------|------------------------|------------------------|----------------------------------------|----------|
|              |                        | Summar                 | у                                      |          |

#### Introduction

The model

Consistency

Convergence in distribution

Examples

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 000         | 00                          |          |
|              |           |             |                             |          |

• We observe a random variable and a deformation of this variable

$$\begin{cases} \varepsilon \\ X = \varphi(\varepsilon) \end{cases}$$

 $\Rightarrow$  Random experiments with some variability :  $\varphi$ .

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 000         | 00                          |          |
|              |           |             |                             |          |

• We observe a random variable and a deformation of this variable

$$\begin{cases} \varepsilon \\ X = \varphi(\varepsilon) \end{cases}$$

- $\Rightarrow$  Random experiments with some variability :  $\varphi$ .
  - How to extract information? : estimation of the deformation, study of a mean distribution if several deformations are observed...

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |
|              |           |             |                             |          |

## Warped curves

Dynamic Time Warping. Sakoe-Chiba-[1978]
 Align two signals (f(i))<sub>1≤i≤N</sub> and (g(j))<sub>1≤j≤M</sub> by a time axis re normalization.
 Idea : to consider some "warping operators" between 1 ≤ i ≤ N and 1 ≤ j ≤ M.
 → Minimize a cost

$$C(w, f, g) = \sum_{(i,j)\in w} \left(f(i) - g(j)\right)^2.$$

| Introduction The r | nodel Co | onsistency ( | Convergence in distribution | Examples |
|--------------------|----------|--------------|-----------------------------|----------|
| 000                | 0        |              | 00                          |          |
| 00                 | 00       |              | 0                           |          |
|                    |          |              |                             |          |

## Warped curves

Dynamic Time Warping. Sakoe-Chiba-[1978]
 Align two signals (f(i))<sub>1≤i≤N</sub> and (g(j))<sub>1≤j≤M</sub> by a time axis re normalization.
 Idea : to consider some "warping operators" between 1 ≤ i ≤ N and 1 ≤ j ≤ M.
 → Minimize a cost

$$C(w, f, g) = \sum_{(i,j)\in w} \left(f(i) - g(j)\right)^2.$$

 Extension to warped curves in a regression scheme : Wang-Gasser-[1999], Gamboa-Loubes-Maza-[2007]. Different cost functions.



| Cons | ister | ιсу |
|------|-------|-----|
| 0    |       |     |
| 00   |       |     |

Examples

## Deformation of distributions

Observations X<sub>j</sub> = φ<sub>j</sub> (ε), 1 ≤ j ≤ J where φ<sub>j</sub> are realizations of a random process.
 Estimation of a mean distribution using the quantile functions F<sub>j</sub><sup>-1</sup> in Gallòn-Loubes-Maza-[2013].



| Cons | istency |
|------|---------|
| 0    |         |
| 00   |         |

Examples

## Deformation of distributions

- Observations X<sub>j</sub> = φ<sub>j</sub> (ε), 1 ≤ j ≤ J where φ<sub>j</sub> are realizations of a random process.
   Estimation of a mean distribution using the quantile functions F<sub>j</sub><sup>-1</sup> in Gallòn-Loubes-Maza-[2013].
- Test for a parametric relationship between two distributions in terms of quantile functions F<sup>-1</sup> = F (G<sup>-1</sup>, θ). Test statistic based on the L<sup>2</sup> norm between quantile functions in Freitag-Munk-[2005].

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |
|              |           |             |                             |          |

#### Model studied

Semi parametric framework

$$\begin{cases} \varepsilon \\ X = \varphi_{\theta^{\star}}(\varepsilon) \end{cases}$$

- shape of the deformation  $\varphi$  assumed  ${\bf known},$
- deformation parameter  $\theta^{\star}$  and template measure  $\mu$  of  $\varepsilon$  to estimate.

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |

#### Model studied

Semi parametric framework

$$\begin{cases} \varepsilon \\ X = \varphi_{\theta^{\star}}(\varepsilon) \end{cases}$$

- shape of the deformation  $\varphi$  assumed **known**,
- deformation parameter  $\theta^{\star}$  and template measure  $\mu$  of  $\varepsilon$  to estimate.

Idea: Align the distribution of X on the distribution of  $\varepsilon$ .  $\xrightarrow{}$  Study of  $Z(\theta) = \varphi_{\theta}^{-1}(X) = \varphi_{\theta}^{-1} \circ \varphi_{\theta^{\star}}(\varepsilon)$ .

| Introd | uction |  |
|--------|--------|--|
|        |        |  |

The model 000 00 Consistency 0 00 Convergence in distribution

Examples

## Parallel with warped curves

$$arphi_{ heta}(t) = t + heta$$

| Inti  | CO d | uct | 10  | n |
|-------|------|-----|-----|---|
| IIILI | ou   | ucu | .10 |   |
|       |      |     |     |   |

The model 000 00 Consistency 0 00 Convergence in distribution

Examples

## Parallel with warped curves

 $\varphi_{\theta}(t) = t + \theta$ 



| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |
|              |           |             |                             |          |

We have  $Z(\theta^{\star}) = \varepsilon$ .

 $\rightarrow$  Align the distribution of  $Z(\theta)$  on the distribution of  $\varepsilon$  by varying  $\theta$ . Minimization of a D.T.W. criterion.

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |
|              |           |             |                             |          |

We have  $Z(\theta^*) = \varepsilon$ .  $\rightarrow$  Align the distribution of  $Z(\theta)$  on the distribution of  $\varepsilon$  by varying  $\theta$ . Minimization of a D.T.W. criterion.

 $\rightarrow$  Which cost function? Requires a distance between probabilities. Utilization of the **Wasserstein distance** related to problems of mass transport.

|  | Convergence in distribution Examples | Consistency<br>O<br>OO | The model | Introduction |
|--|--------------------------------------|------------------------|-----------|--------------|
|--|--------------------------------------|------------------------|-----------|--------------|

## Summary

#### Introduction

#### The model Statistical framework The estimators

Consistency

Convergence in distribution

Examples

| r | t | r | 0 |  | С | t | 0 | n |
|---|---|---|---|--|---|---|---|---|
|   |   |   |   |  |   |   |   |   |

| С | on | sis | ste | no | зy |
|---|----|-----|-----|----|----|
|   |    |     |     |    |    |
| 0 | 0  |     |     |    |    |

Examples

#### Presentation of the model

#### **Observations** :

$$\begin{cases} \varepsilon_{i1} \quad 1 \leq i \leq n \\ X_i = \varphi_{\theta^*} (\varepsilon_{i2}) \quad 1 \leq i \leq n \end{cases}$$
(1)

- structure :  $(\varepsilon_{ij})_{\substack{1 \leqslant i \leqslant n \\ j=1,2}}$  i.i.d. following the law  $\mu$ ,
- deformation parameter :  $\theta^{\star}$  where  $\theta^{\star} \in \Theta \subset \mathbb{R}^d$ ,
- deformation function :  $\varphi_{\theta}$  : ]*a*; *b*[ $\rightarrow$ ]*c*; *d*[ invertible for  $\theta \in \Theta$ ,
- Empirical distribution of the i.i.d. sample  $(\varepsilon_{i1})_{1 \leqslant i \leqslant n}$  :  $\mu_1^n$  .

| Introduction Th | he model | Consistency | Convergence in distribution | Examples |
|-----------------|----------|-------------|-----------------------------|----------|
| 0               | • •<br>• | 000         | 00                          |          |

For  $\theta\in\Theta$  we define

$$Z_{i}(\theta) = \varphi_{\theta}^{-1}(X_{i}) = \varphi_{\theta}^{-1} \circ \varphi_{\theta^{\star}}(\varepsilon_{i2})$$

- Distribution of  $Z_1(\theta)$  :  $\mu_{\star}(\theta) = \mu \circ \varphi_{\theta^{\star}}^{-1} \circ \varphi_{\theta}$ ,
- Empirical distribution of the i.i.d. sample  $(Z_1(\theta), \ldots, Z_n(\theta))$ :  $\mu_{\star}^n(\theta) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Z_i(\theta)}.$

| Introduction The model | Consistency | Convergence in distribution | Examples |
|------------------------|-------------|-----------------------------|----------|
| 000                    | 000         | 00                          |          |

For  $\theta \in \Theta$  we define

$$Z_{i}\left(\theta\right) = \varphi_{\theta}^{-1}\left(X_{i}\right) = \varphi_{\theta}^{-1} \circ \varphi_{\theta^{\star}}\left(\varepsilon_{i2}\right)$$

- Distribution of  $Z_1(\theta)$  :  $\mu_{\star}(\theta) = \mu \circ \varphi_{\theta^{\star}}^{-1} \circ \varphi_{\theta}$ ,
- Empirical distribution of the i.i.d. sample  $(Z_1(\theta), \ldots, Z_n(\theta))$ :  $\mu_{\star}^n(\theta) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Z_i(\theta)}.$

 $\Rightarrow \text{Recover } \theta^{\star} \text{ by minimizing the energy needed to align the distribution } \mu_{\star}(\theta) \text{ on } \mu : \mu_{\star}(\theta^{\star}) = \mu.$ 

Wasserstein distance to quantify the alignment.

|  |  | 10 |
|--|--|----|
|  |  |    |
|  |  |    |
|  |  |    |

| The | model |
|-----|-------|
| 000 |       |
| 00  |       |

Convergence in distribution

Examples

#### Wasserstein distance

Set  $\mathcal{W}_2(\mathbb{R}) = \{P \text{ probability on } \mathbb{R}, \int_{\mathbb{R}} x^2 dP < \infty \}$ . For  $P, Q \in \mathcal{W}_2(\mathbb{R})$  with respective distribution function F and G, their Wasserstein distance is

$$W_2^2(P,Q) = \int_0^1 \left(F^{-1}(t) - G^{-1}(t)\right)^2 dt.$$
 (2)

| Introduction |
|--------------|
|              |
|              |
|              |

| The | model |
|-----|-------|
| 000 |       |
| 00  |       |

Convergence in distribution

Examples

#### Wasserstein distance

Set  $\mathcal{W}_2(\mathbb{R}) = \{P \text{ probability on } \mathbb{R}, \int_{\mathbb{R}} x^2 dP < \infty \}$ . For  $P, Q \in \mathcal{W}_2(\mathbb{R})$  with respective distribution function F and G, their Wasserstein distance is

$$W_2^2(P,Q) = \int_0^1 \left( F^{-1}(t) - G^{-1}(t) \right)^2 dt.$$
 (2)

If P and Q are defined on more general metric space (S, d) with a moment of order 2 :

$$W_2^2(P,Q) = \inf_{X \sim P, Y \sim Q} \mathbb{E}\left[d(X,Y)^2\right]$$

| The | model |
|-----|-------|
| 00  |       |
| 00  |       |

Convergence in distribution

Examples

#### Wasserstein distance

Set  $\mathcal{W}_2(\mathbb{R}) = \{P \text{ probability on } \mathbb{R}, \int_{\mathbb{R}} x^2 dP < \infty \}$ . For  $P, Q \in \mathcal{W}_2(\mathbb{R})$  with respective distribution function F and G, their Wasserstein distance is

$$W_2^2(P,Q) = \int_0^1 \left( F^{-1}(t) - G^{-1}(t) \right)^2 dt.$$
 (2)

If P and Q are defined on more general metric space (S, d) with a moment of order 2 :

$$W_2^2(P,Q) = \inf_{X \sim P, Y \sim Q} \mathbb{E}\left[d(X,Y)^2\right]$$

• Set 
$$X_n \sim P_n, X \sim P$$
.  
Then  $W_2(P_n, P) \to 0 \iff \begin{cases} X_n \rightharpoonup X \\ \mathbb{E}[X_n^2] \to \mathbb{E}[X^2] \end{cases}$ 



#### The estimators

To quantify the alignment of the measures, consider the criterion

$$M(\theta) = W_2^2(\mu_{\star}(\theta), \mu)$$
(3)



#### The estimators

To quantify the alignment of the measures, consider the criterion

$$M(\theta) = W_2^2(\mu_{\star}(\theta), \mu)$$
(3)

**Characterisation of**  $\theta^{\star}$ : min<sub> $\Theta$ </sub>  $M = 0 = M(\theta^{\star})$ .



#### The estimators

To quantify the alignment of the measures, consider the criterion

$$M(\theta) = W_2^2(\mu_{\star}(\theta), \mu)$$
(3)

**Characterisation of**  $\theta^*$  :  $\min_{\Theta} M = 0 = M(\theta^*)$ .  $\rightarrow$  Empirical version :

$$M_n(\theta) = W_2^2(\mu_{\star}^n(\theta), \mu_1^n)$$

|  |  | u | ~ | C1 |  |  |
|--|--|---|---|----|--|--|

The model ○○○ ○●

Consistency 0 Convergence in distribution

Examples

#### with the order statistics

$$M_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left[ Z_{(i)}(\theta) - \varepsilon_{(i)1} \right]^2.$$
(4)

| The | model |  |
|-----|-------|--|
|     |       |  |
| 00  |       |  |

Convergence in distribution

Examples

with the order statistics

$$M_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left[ Z_{(i)}(\theta) - \varepsilon_{(i)1} \right]^2.$$
(4)

Leads to the M-estimator for the deformation parameters

Estimator of  $\theta^*$  $\widehat{\theta}^n \in \operatorname{argmin}_{\theta \in \Theta} M_n(\theta)$ . (5)

|  | ÷ |  |  | ÷. |  |  |
|--|---|--|--|----|--|--|
|  |   |  |  |    |  |  |
|  |   |  |  |    |  |  |

| The | model |  |
|-----|-------|--|
|     |       |  |
| 00  |       |  |

Convergence in distribution

kamples

with the order statistics

$$M_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left[ Z_{(i)}(\theta) - \varepsilon_{(i)1} \right]^2.$$
(4)

Leads to the M-estimator for the deformation parameters

Estimator of  $\theta^*$   $\widehat{\theta}^n \in \operatorname{argmin}_{\theta \in \Theta} M_n(\theta)$ . (5) We have  $\varphi_{\widehat{\theta}^n}^{-1}(X_i) = \varphi_{\widehat{\theta}^n}^{-1} \circ \varphi_{\theta^*}(\varepsilon_{i2}) \approx \varepsilon_{i2}$ , following the unknown law  $\mu$ .

|  | ÷ |  |  | ÷. |  |  |
|--|---|--|--|----|--|--|
|  |   |  |  |    |  |  |
|  |   |  |  |    |  |  |

| The mode | el |
|----------|----|
| 000      |    |
| 0.       |    |

Convergence in distribution

Examples

(5)

with the order statistics

$$M_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left[ Z_{(i)}(\theta) - \varepsilon_{(i)1} \right]^2.$$
(4)

Leads to the M-estimator for the deformation parameters

Estimator of  $\theta^{\star}$ 

$$\widehat{ heta}^{n}\in {\it argmin}_{ heta\in \Theta}M_{n}\left( heta
ight)$$
 .

We have  $\varphi_{\widehat{\theta}^n}^{-1}(X_i) = \varphi_{\widehat{\theta}^n}^{-1} \circ \varphi_{\theta^*}(\varepsilon_{i2}) \approx \varepsilon_{i2}$ , following the unknown law  $\mu$ .

• Plugg-in estimator of  $\mu$ 

$$\widehat{\mu}^n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\varphi_{\widehat{\theta}^n}^{-1}(X_i)}$$
(6)

Idea : "increase" the size of  $(\varepsilon_{i1})_{1 \leqslant i \leqslant n} \rightsquigarrow \widetilde{\mu}^n = \frac{1}{2} (\widehat{\mu}^n + \mu_1^n)$ 

| Introduction | The model | Consistency | Convergence in distrib |
|--------------|-----------|-------------|------------------------|
|              | 000       | 000         | 00                     |
|              |           |             |                        |

## Summary

Introduction

#### The model

Consistency M-estimation Result

Convergence in distribution

Examples





Examples

## Principle of M-estimation

 $\rightarrow$  Convergence criterion for estimators defined as minimizers of a random functional  $M_n$  on a set  $\Theta$ .

$$\begin{array}{ccc} M_n(\theta) & \xrightarrow{n \to \infty} & M(\theta) \\ \min \uparrow & \min \uparrow \\ \widehat{\theta}^n & \xrightarrow{?} & \theta^* \end{array}$$



he model 00 Consistency

Convergence in distribution

Examples

## Principle of M-estimation

 $\rightarrow$  Convergence criterion for estimators defined as minimizers of a random functional  $M_n$  on a set  $\Theta$ .

| $M_n(\theta)$          | $\xrightarrow{n\to\infty}$ | $M(\theta)$      |
|------------------------|----------------------------|------------------|
| min ↑                  |                            | min ↑            |
| $\widehat{\theta}^{n}$ | $\xrightarrow{?}$          | $\theta^{\star}$ |

Consistency criterion

- If *M* is a deterministic function,
- $sup_{\theta\in\Theta} \left| M_n\left( \theta \right) M\left( \theta \right) \right| \xrightarrow{n \to \infty} 0$  in probability,
- $\forall \delta > 0$   $\inf_{\theta \in \Theta \cap B(\theta^{\star}, \delta)^{c}} M(\theta) > M(\theta^{\star})$

then 
$$\widehat{\theta}^n \xrightarrow{n \to \infty} \theta^*$$
 in probability.

| ntroduction | The model | Consistency | Conv |
|-------------|-----------|-------------|------|
|             | 000       | 0           | 00   |
|             | 00        | •0          | 0    |
|             |           |             |      |

Examples

## Assumptions

- Laws considered are defined on subsets of  $\mathbb{R}$  and  $\forall \theta \in \Theta$ ,  $\mu_{\star}(\theta) \in \mathcal{W}_{2}(\mathbb{R})$ .
  - $\Rightarrow$  Computation of the Wasserstein distance.

| The model |
|-----------|
| 000       |
| 00        |

| Consistency |  |
|-------------|--|
| 0           |  |
| •0          |  |

## Assumptions

• Laws considered are defined on subsets of  $\mathbb{R}$  and  $\forall \theta \in \Theta$ ,  $\mu_{\star}(\theta) \in \mathcal{W}_{2}(\mathbb{R})$ .

 $\Rightarrow$  Computation of the Wasserstein distance.

• Regularity  $C^1$  of  $\varphi_{\theta}^{-1}(x)$  with respect to  $\theta \in \Theta$ .

| The | mode |
|-----|------|
| 000 |      |
| 00  |      |

| ( | Consistency |
|---|-------------|
|   | С           |
|   | 0           |

## Assumptions

• Laws considered are defined on subsets of  $\mathbb{R}$  and  $\forall \theta \in \Theta$ ,  $\mu_{\star}(\theta) \in \mathcal{W}_{2}(\mathbb{R})$ .

 $\Rightarrow$  Computation of the Wasserstein distance.

• Regularity  $C^1$  of  $\varphi_{\theta}^{-1}(x)$  with respect to  $\theta \in \Theta$ . The family  $\{\partial \varphi_{\theta}^{-1}(\cdot)\}_{\theta \in \Theta}$  has an envelop in  $L^2(X)$ :

$$\sup_{\theta \in \Theta} \left\| \partial \varphi_{\theta}^{-1}(x) \right\| \leqslant H(x) \text{ with } H \in L^{2}(X)$$

 $\Rightarrow \mbox{Control the distance between } \mu_{\star}\left(\theta^{1}\right) \mbox{ and } \mu_{\star}\left(\theta^{2}\right) \mbox{ for } \theta^{1}, \theta^{2} \in \Theta.$ 

| The | mode |
|-----|------|
| 000 |      |
| 00  |      |

| Consisten | су |
|-----------|----|
| 0         |    |
| •0        |    |

xamples

## Assumptions

• Laws considered are defined on subsets of  $\mathbb{R}$  and  $\forall \theta \in \Theta$ ,  $\mu_{\star}(\theta) \in \mathcal{W}_{2}(\mathbb{R})$ .

 $\Rightarrow$  Computation of the Wasserstein distance.

• Regularity  $C^1$  of  $\varphi_{\theta}^{-1}(x)$  with respect to  $\theta \in \Theta$ . The family  $\{\partial \varphi_{\theta}^{-1}(\cdot)\}_{\theta \in \Theta}$  has an envelop in  $L^2(X)$ :

$$\sup_{\theta \in \Theta} \left\| \partial \varphi_{\theta}^{-1}(x) \right\| \leqslant H(x) \text{ with } H \in L^{2}(X)$$

 $\Rightarrow \mbox{Control the distance between } \mu_{\star}\left(\theta^{1}\right) \mbox{ and } \mu_{\star}\left(\theta^{2}\right) \mbox{ for } \theta^{1}, \theta^{2} \in \Theta.$ 

Θ compact and convex subset of ℝ<sup>d</sup>.
 ⇒ Uniform convergence and Taylor expansion.

| The | mod |
|-----|-----|
| 000 |     |
| 00  |     |

| Consistency |  |
|-------------|--|
| 0           |  |
| •0          |  |

#### Examples

## Assumptions

• Laws considered are defined on subsets of  $\mathbb{R}$  and  $\forall \theta \in \Theta$ ,  $\mu_{\star}(\theta) \in \mathcal{W}_{2}(\mathbb{R}).$ 

 $\Rightarrow$  Computation of the Wasserstein distance.

• Regularity  $C^1$  of  $\varphi_{\theta}^{-1}(x)$  with respect to  $\theta \in \Theta$ . The family  $\{\partial \varphi_{\theta}^{-1}(\cdot)\}_{\theta \in \Theta}$  has an envelop in  $L^2(X)$ :

$$\sup_{\theta \in \Theta} \left\| \partial \varphi_{\theta}^{-1}(x) \right\| \leqslant H(x) \text{ with } H \in L^{2}(X)$$

 $\Rightarrow \text{Control the distance between } \mu_{\star}\left(\theta^{1}\right) \text{ and } \mu_{\star}\left(\theta^{2}\right) \text{ for } \theta^{1}, \theta^{2} \in \Theta.$ 

- Θ compact and convex subset of ℝ<sup>d</sup>.
   ⇒ Uniform convergence and Taylor expansion.
- Identifiability condition : for all  $\theta \neq \theta^*$ ,  $\varphi_{\theta}^{-1} \circ \varphi_{\theta^*} \neq Id$  on a set of positive  $\mu$ -measure.
  - $\Rightarrow$  Uniqueness of the minimizer of the function *M*.

| ) | d | u | C. | ti | 0 | n |
|---|---|---|----|----|---|---|
|   |   |   |    |    |   |   |
|   |   |   |    |    |   |   |

| he | mo | del |  |
|----|----|-----|--|
| 00 |    |     |  |
| 0  |    |     |  |

| Consistency |  |
|-------------|--|
| 0           |  |
| 0.          |  |

Examples

#### Consistency results

Deformation estimator

$$\widehat{ heta}^{n}\in \mathit{argmin}_{ heta\in\Theta} M_{n}\left( heta
ight)$$
 :

#### Theorem

Under previous assumptions  $\hat{\theta}^n$  converges in probability to  $\theta^*$ .

Measure estimator

$$\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\varphi_{\widehat{\theta}^n}^{-1}(X_i)}$$

#### Theorem

Under previous assumptions

$$W_2(\widehat{\mu}_n,\mu) \xrightarrow{n \to \infty} 0$$
 in probability.

| Introduction | The model<br>000<br>00 | Consistency<br>O<br>OO | Convergence in distribution<br>00<br>0 | Examp |
|--------------|------------------------|------------------------|----------------------------------------|-------|
|              |                        | Summa                  | iry                                    |       |

#### Introduction

The model

#### Consistency

#### Convergence in distribution

New framework Idea of proof

#### Examples



In addition to the previous assumptions, we assume

• More regularity :  $\varphi^{-1}$  is  $C^2$  with respect to its two variables  $(\theta, x)$ .



#### Assumptions

In addition to the previous assumptions, we assume

- More regularity :  $\varphi^{-1}$  is  $C^2$  with respect to its two variables  $(\theta, x)$ .
- The distribution of X has a compact support with distribution function  $F_{\star}$   $C^1$ . We assume  $F'_{\star} := f_{\star} > 0$  on its support.

 $\Rightarrow$  The distribution function F associated with the law  $\mu$  (law of  $\varepsilon$ ) has a compact support and is  $C^1$  with F' = f > 0.



Set 
$$\Phi = \int_0^1 \partial \varphi_{\theta^\star}^{-1} \left( F_\star^{-1}(t) \right)^2 dt \in \mathbb{R}^{d \times d}$$
.

#### Theorem

Under previous assumptions and if  $\Phi$  is invertible, then

$$\sqrt{n}\left(\widehat{\theta}^n - \theta^\star\right) \rightharpoonup \Phi^{-1} \int_0^1 \frac{\partial \varphi_{\theta^\star}^{-1}\left(F_\star^{-1}(t)\right)}{f(F^{-1}(t))} \left[\mathbb{G}_2(t) - \mathbb{G}_1(t)\right] dt$$

where  $\mathbb{G}_1$  and  $\mathbb{G}_2$  are independent standard Brownian bridges.



## Idea of proof

→ Remains to study  $\Psi(F^n, F^n_*)$  where  $F^n$  (resp.  $F^n_*$ ) is the empirical distribution function associated with the sample  $(\varepsilon_{i1})_{1 \leq i \leq n}$  (resp.  $(X_i)_{1 \leq i \leq n}$ ).



## Idea of proof

→ Remains to study  $\Psi(F^n, F^n_{\star})$  where  $F^n$  (resp.  $F^n_{\star}$ ) is the empirical distribution function associated with the sample  $(\varepsilon_{i1})_{1 \leq i \leq n}$  (resp.  $(X_i)_{1 \leq i \leq n}$ ). Convergence of the empirical distribution functions :

#### Theorem (Donsker)

If  $Y_1, \ldots, Y_n$  are i.i.d. random variables with distribution function F and empirical distribution function  $F_n$ , the sequence  $\sqrt{n}(F_n - F)$  converges in law in  $\mathbb{S}$ , the space of function cadlag on  $\mathbb{R}$  endowed with the norm  $\|\cdot\|_{\infty}$  to  $\mathbb{G} \circ F$  where  $\mathbb{G}$  is a standard Brownian bridge.



## Idea of proof

→ Remains to study  $\Psi(F^n, F^n_{\star})$  where  $F^n$  (resp.  $F^n_{\star}$ ) is the empirical distribution function associated with the sample  $(\varepsilon_{i1})_{1 \leq i \leq n}$  (resp.  $(X_i)_{1 \leq i \leq n}$ ). Convergence of the empirical distribution functions :

#### Theorem (Donsker)

If  $Y_1, \ldots, Y_n$  are i.i.d. random variables with distribution function F and empirical distribution function  $F_n$ , the sequence  $\sqrt{n}(F_n - F)$  converges in law in  $\mathbb{S}$ , the space of function cadlag on  $\mathbb{R}$  endowed with the norm  $\|\cdot\|_{\infty}$  to  $\mathbb{G} \circ F$  where  $\mathbb{G}$  is a standard Brownian bridge.

 $\Rightarrow$  Application of a **Delta-method**.

| Introduction | The model<br>000<br>00 | Consistency<br>O<br>OO | Convergence in distribution<br>00<br>0 | Examples |  |  |
|--------------|------------------------|------------------------|----------------------------------------|----------|--|--|
| Summary      |                        |                        |                                        |          |  |  |

#### Introduction

The model

Consistency

Convergence in distribution

Examples



## Examples

• Example 1 : Translation model

 $\varphi_{\theta}\left(x\right) = x + \theta$ 

 $\Rightarrow \mu \in \mathcal{W}_2(\mathbb{R})$ , and  $\Theta \subset \mathbb{R}$  compact interval.



## Examples

• Example 1 : Translation model

$$\varphi_{\theta}\left(x\right) = x + \theta$$

 $\Rightarrow \mu \in \mathcal{W}_2(\mathbb{R})$ , and  $\Theta \subset \mathbb{R}$  compact interval.

$$\begin{cases} \varepsilon_{i1} \\ X_i = \theta^* + \varepsilon_{i2} \end{cases} \quad 1 \leqslant i \leqslant n$$

$$\widehat{\theta}^n = \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n \varepsilon_{i1} = \theta^* - \left[ \frac{1}{n} \sum_{i=1}^n \varepsilon_{i2} - \frac{1}{n} \sum_{i=1}^n \varepsilon_{i1} \right]$$

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000<br>00 | 000         | 00                          |          |

• Example 2 : Logit model

$$arphi_{ heta}\left(x
ight)=rac{1}{1+\exp\left( heta x
ight)}$$

 $\Rightarrow \mu \in \mathcal{W}_2(\mathbb{R})$  and  $\Theta$  compact interval of  $] - \infty$ ; 0[.

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |

• Example 2 : Logit model

$$arphi_{ heta}\left(x
ight) = rac{1}{1 + \exp\left( heta x
ight)}$$
  
 $\Rightarrow \mu \in \mathcal{W}_{2}\left(\mathbb{R}
ight)$  and  $\Theta$  compact interval of  $] - \infty$ ; 0[.

$$\begin{cases} \varepsilon_{i1} \\ X_i = \frac{1}{1 + \theta^* \varepsilon_{i2}} & 1 \leq i \leq n \\ \\ \widehat{\theta}^n = \frac{\sum_{i=1}^n \ln\left(\frac{1 - X_{(i)}}{X_{(i)}}\right)^2}{\sum_{i=1}^n \ln\left(\frac{1 - X_{(i)}}{X_{(i)}}\right) \varepsilon_{(i)1}} = \theta^* \frac{\sum_{i=1}^n \varepsilon_{(i)2}^2}{\sum_{i=1}^n \varepsilon_{(i)2} \varepsilon_{(i)1}} \end{cases}$$

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |
|              |           |             |                             |          |

• Example 3: Location/scale model

$$\varphi_{\theta}\left(x\right) = \theta_{2}x + \theta_{1}$$

 $\Rightarrow \mu \in \mathcal{W}_{2}(\mathbb{R})$  and  $\Theta$  compact in  $\mathbb{R} \times ]0; +\infty[$ .

| Introduction | The model | Consistency | Convergence in distribution | Examples |
|--------------|-----------|-------------|-----------------------------|----------|
|              | 000       | 0           | 00                          |          |
|              | 00        | 00          | 0                           |          |
|              |           |             |                             |          |

• Example 3: Location/scale model

$$\varphi_{\theta}\left(x\right) = \theta_2 x + \theta_1$$

 $\Rightarrow \mu \in \mathcal{W}_2\left(\mathbb{R}\right)$  and  $\Theta$  compact in  $\mathbb{R} \times ]0; +\infty[$  .

 $\rightarrow \text{Scale model}$ 

$$\begin{cases} \varepsilon_{i1} \\ X_i = \theta^* \varepsilon_{i2} \end{cases} \quad 1 \leq i \leq n \\ \widehat{\theta}^n = \frac{\sum_{i=1}^n X_{(i)}^2}{\sum_{i=1}^n X_{(i)}^{(i)\varepsilon(i)1}} = \theta^* \frac{\sum_{i=1}^n \varepsilon_{(i)2}^2}{\sum_{i=1}^n \varepsilon_{(i)2}^{(i)\varepsilon(i)1}} \end{cases}$$



| С | ons | iste | ncy |
|---|-----|------|-----|
| C |     |      |     |
| C | 0   |      |     |

Examples

## Bibliography

**Gamboa-Loubes-Maza-[2007]** : F. Gamboa, J.-M. Loubes, and E. Maza. <u>Semi-parametric estimation of shifts.</u> Electron. J. Stat., 1 :616-640, 2007.

**Gallòn-Loubes-Maza-[2011]** : S. Gallòn, J-M Loubes, E. Maza, <u>Statistical Properties of the Quantile Normalization Method</u> for Density Curve Alignment. Technical report, May 2011.

**Vimond-[2010]** : M. Vimond, Efficient estimation for a subclass of shape invariant models. Ann. Statist., 38(3):1885 1912, 2010.

**Wang-Gasser-[1999]** : K. Wang and T. Gasser. <u>Synchronizing</u> sample curves nonparametrically. Ann. Statist., 27(2) :439-460, 1999.