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Introduction

@ We observe a random variable and a deformation of this
variable

{ i<:<p(€)

= Random experiments with some variability : .



Introduction

@ We observe a random variable and a deformation of this
variable

{ £
X =¢(e)
= Random experiments with some variability : .

@ How to extract information? : estimation of the deformation,
study of a mean distribution if several deformations are
observed...
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Warped curves

@ Dynamic Time Warping. Sakoe-Chiba-[1978]
Align two signals (f(i));<;<n and (g(j))1<j<m by a time
axis re normalization.
Idea : to consider some "warping operators” between
1<i<Nand1<j<< M.
~» Minimize a cost

Clw,f.g)= Y (f(i)—g()).
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Warped curves

@ Dynamic Time Warping. Sakoe-Chiba-[1978]
Align two signals (f(i));<;<n and (g(j))1<j<m by a time
axis re normalization.
Idea : to consider some "warping operators” between
1<i<Nand 1< j <M.
~» Minimize a cost

Clw,f.g)= Y (f(i)—g()).

(ig)ew

@ Extension to warped curves in a regression scheme :
Wang-Gasser-[1999], Gamboa-Loubes-Maza-[2007].
Different cost functions.
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Introduction

Deformation of distributions

@ Observations X; = ¢; (), 1 < j < J where ¢; are realizations
of a random process.
Estimation of a mean distribution using the quantile functions
F;* in Gallon-Loubes-Maza-[2013].

@ Test for a parametric relationship between two distributions in
terms of quantile functions F~1 = F (G_l, 9). Test statistic
based on the L2 norm between quantile functions in
Freitag-Munk-[2005].
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@ shape of the deformation ¢ assumed known,

o deformation parameter 0* and template measure p of € to
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Introduction

Model studied

Semi parametric framework

{ ;ZW* (¢)

@ shape of the deformation ¢ assumed known,

o deformation parameter 0* and template measure p of € to
estimate.
Idea: Align the distribution of X on the distribution of €.
~ Study of Z (0) = ¢, " (X) = ¢, o g+ (e).
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We have Z (6*) = «.
— Align the distribution of Z (6) on the distribution of ¢ by
varying 6. Minimization of a D.T.W. criterion.



Introduction

We have Z (6*) = «.
— Align the distribution of Z (6) on the distribution of ¢ by
varying 6. Minimization of a D.T.W. criterion.

— Which cost function? Requires a distance between probabilities.
Utilization of the Wasserstein distance related to problems of
mass transport.
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The model
@00

Presentation of the model

Observations :

{6,-1 1<i<n (1)
X,':(pg*(&‘,g) 1<I<n

e structure : (gj)1<i<n i-i.d. following the law i,
j=12

o deformation parameter : §* where 6* € © C RY,

e deformation function : ¢y : |a; b[ — ]c; d[ invertible for § € ©,

o Empirical distribution of the i.i.d. sample (ei1);<;c, : #7 -
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For 6 € © we define

Zi(0) = ¢ " (Xi) = @5 " 0 por (ei2)

o Distribution of Z; (0) : 1. (6) = oyt o g ,
e Empirical distribution of the i.i.d. sample (Z1 (0),...,Z,(0)):
pl(0) =137 179



The model
oeo

For 6 € © we define

Zi(0) = ¢ " (Xi) = @5 " 0 por (ei2)

o Distribution of Z; (0) : 1. (6) = oyt o g ,
e Empirical distribution of the i.i.d. sample (Z1 (0),...,Z,(0)):
Pl (0) = 3 X1 1z0).
=- Recover 6* by minimizing the energy needed to align the
distribution g, (0) on p :py (6%) = p.
Wasserstein distance to quantify the alignment.
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Wasserstein distance

Set W, (R) = { P probability on R, [, x?dP < oo} .
For P, Q 6 Ws (R) with respective distribution function F and G,
their Wasserstein distance is

W2 (P,Q) = /01 (F,l (t)— G1 (t))2 dt. (2)
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moment of order 2 :

W3 (P, Q)= inf E [d(X,Y)?]
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Wasserstein distance

Set W, (R) = { P probability on R, [, x?dP < oo} .
For P, Q 6 Ws (R) with respective distribution function F and G,
their Wasserstein distance is

W2 (P, Q) = /01 (F,l (t)— G1 (t))2 dt. (2)

If P and Q are defined on more general metric space (S, d) with a
moment of order 2 :

W3 (P, Q)= inf E [d(X,Y)?]

o Set X, ~ Py, X ~ P.

Xp— X
Then WQ(Pn7P)_>O < {]E[Xr%] —)E[XZ}
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M (0) = W3 (ke (6) , 1) (3)
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The model

[ Je]

The estimators

To quantify the alignment of the measures, consider the criterion

M (0) = W3 (ke (6) , 1) (3)

Characterisation of 0* : ming M =0= M (0*).
— Empirical version :

M (8) = W3 (1 (6), 1)
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with the order statistics

Leads to the M-estimator for the deformation parameters

Estimator of 0*

6" € argmingeo M, (6) . (5)
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We have goéfnl (Xi) = cpeinl o g+ (€j2) = €jz, following the unknown

law p.
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with the order statistics

Leads to the M-estimator for the deformation parameters

Estimator of 0*

Examples

6" € argmingeo M, (6) .

We have goéfnl (Xi) = cpeinl o g+ (€j2) = €jz, following the unknown

law p.

@ Plugg-in estimator of p

1 n
Y
pr=— > Lo-1ix)
=1

Idea : "increase” the size of (gj1);<jc, ~ A" = 5 (A" + pf)
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Principle of M-estimation

— Convergence criterion for estimators defined as minimizers of a
random functional M, on a set ©.

M, (0) == M(0)
min T min 7
L e



Consistency
o

Principle of M-estimation

— Convergence criterion for estimators defined as minimizers of a
random functional M, on a set ©.

M, (0) == M(0)
min T min 7
L e

Consistency criterion

o If M is a deterministic function,
n—o0

@ supgco |[M,(0) — M (0)] —— 0 in probability,
o V6 >0 inf‘ge@mB(e*’(s)C M (9) > M (9*)

then 87 222 0% in probability.
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o Regularity C* of ¢, '(x) with respect to 6 € ©.
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@ Laws considered are defined on subsets of R and V0 € ©,
jum (9) eWs (R)
= Computation of the Wasserstein distance.

o Regularity C! of gog_l(x) with respect to 6 € ©. The family
{&pe_l( “)}peo has an envelop in L2 (X) :

sup [| 0, (x)|| < H(x) with H € L* (X)
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= Control the distance between 4, (61) and fi (62) for
6',6% c ©.
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{&pe_l( “)}peo has an envelop in L2 (X) :

sup [| 0, (x)|| < H(x) with H € L* (X)
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= Control the distance between 4, (61) and fi (62) for
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@ © compact and convex subset of RY.
=- Uniform convergence and Taylor expansion.



Consistency

0

Assumptions

Laws considered are defined on subsets of R and V0 € ©,
jum (9) eWs (R)
= Computation of the Wasserstein distance.

Regularity C! of gog_l(x) with respect to 6 € ©. The family
{&pe_l( “)}peo has an envelop in L2 (X) :

sup [| 0, (x)|| < H(x) with H € L* (X)
4SS

= Control the distance between 4, (61) and fi (62) for
6',6% c ©.

© compact and convex subset of RY.

=- Uniform convergence and Taylor expansion.
Identifiability condition : for all 6 # 6%, ¢, o @g+ # Id on a
set of positive p-measure.

= Uniqueness of the minimizer of the function M.
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Consistency results

Deformation estimator

0" € argmingeo M, (6) -

Under previous assumptions g converges in probability to 0*.

Measure estimator

~ 1
fin =201 Lo=10x)

Under previous assumptions

W (Tin, 1) ——=25 0 in probability.
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Assumptions

In addition to the previous assumptions, we assume

o More regularity : ¢!

(0, x).

is C2 with respect to its two variables

Examples



Convergence in distribution
[ 1]

Assumptions

In addition to the previous assumptions, we assume

1is C? with respect to its two variables

@ More regularity : ¢~
(0, x).

@ The distribution of X has a compact support with distribution
function F, C!. We assume F/ := f, > 0 on its support.

= The distribution function F associated with the law p (law of ¢)
has a compact support and is C! with F' = f > 0.
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Result

Set & = [ 9yt (F;l(t))2 dt € R9*9,

Under previous assumptions and if ® is invertible, then

- 1 -1 -1
V(@ -e) o | 8_90?&_(—?(2)(;)) Eal) ~ Gl

where G; and G» are independent standard Brownian bridges.
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— Remains to study W (F" F]) where F" (resp. F[) is the
empirical distribution function associated with the sample
(5i1)1<i<n (resp. (Xi)lgign )-
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Idea of proof

— Remains to study W (F" F]) where F" (resp. F[) is the
empirical distribution function associated with the sample
(5i1)1<i<n (resp. (Xi)lgign )-

Convergence of the empirical distribution functions :

Theorem (Donsker)

If Y1,...,Y, are i.i.d. random variables with distribution function
F and empirical distribution function F,,, the sequence

V/n(F, — F) converges in law in S, the space of function cadlag on
R endowed with the norm ||-||, to G o F where G is a standard
Brownian bridge.
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Idea of proof

— Remains to study W (F" F]) where F" (resp. F[) is the
empirical distribution function associated with the sample
(5i1)1<i<n (resp. (Xi)lgign )-

Convergence of the empirical distribution functions :

Theorem (Donsker)

If Y1,...,Y, are i.i.d. random variables with distribution function
F and empirical distribution function F,,, the sequence

V/n(F, — F) converges in law in S, the space of function cadlag on
R endowed with the norm ||-||, to G o F where G is a standard
Brownian bridge.

= Application of a Delta-method.
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@ Example 1 : Translation model
@p (x) =x+0

= p € Whr(R), and © C R compact interval.
€i1 .
1<i<
{ Xi=0"~+¢p s

An 1 n 1 n ) 1 n 1 n
) :nélxi—nélﬁuzé’— nélcfiz—nglzfil
1= 1= 1= 1=
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@ Example 2 : Logit model

1
1+ exp(6x)

= u € Wh (R) and © compact interval of | — oco; 0].

®o (x)

Examples
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@ Example 2 : Logit model

1

w0 (x) = 1 + exp (6x)

= u € Wh (R) and © compact interval of | — oco; 0].

e
{ )él 1 1<i<n
I 140%ep
S n (71_)(([))2 02
é\” _ i=1 Xy _ g i=1=(i)2
1

S (5o e im0



Introduction The model Consistency Convergence in distribution

000 o (ele]
(e]e] (o]e] [e]

e Example 3: Location/scale model

(Yo} (X) = 92X + 91
= u € Wh (R) and © compact in Rx]0; +o0f .
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Examples

e Example 3: Location/scale model

(Yo} (X) = 92X + 91
= u € Wh (R) and © compact in Rx]0; +o0f .

— Scale model

Eil .
<i <
{ Xi=pep TSSO
D 5P D >

Y XaEm Y1 E(eg(in
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