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Introduction The model Consistency Convergence in distribution Examples

We observe a random variable and a deformation of this
variable {

ε
X = ϕ (ε)

⇒ Random experiments with some variability : ϕ.

How to extract information? : estimation of the deformation,
study of a mean distribution if several deformations are
observed...
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Warped curves

Dynamic Time Warping. Sakoe-Chiba-[1978]
Align two signals (f (i))16i6N and (g(j))16j6M by a time

axis re normalization.
Idea : to consider some ”warping operators” between
1 6 i 6 N and 1 6 j 6 M.
 Minimize a cost

C (w , f , g) =
∑

(i ,j)∈w

(f (i)− g(j))2 .

Extension to warped curves in a regression scheme :
Wang-Gasser-[1999], Gamboa-Loubes-Maza-[2007].
Different cost functions.
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Deformation of distributions

Observations Xj = ϕj (ε) , 1 6 j 6 J where ϕj are realizations
of a random process.
Estimation of a mean distribution using the quantile functions
F−1
j in Gallòn-Loubes-Maza-[2013].

Test for a parametric relationship between two distributions in
terms of quantile functions F−1 = F

(
G−1, θ

)
. Test statistic

based on the L2 norm between quantile functions in
Freitag-Munk-[2005].
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Model studied

Semi parametric framework{
ε
X = ϕθ? (ε)

shape of the deformation ϕ assumed known,

deformation parameter θ? and template measure µ of ε to
estimate.

Idea: Align the distribution of X on the distribution of ε.
 Study of Z (θ) = ϕ−1

θ (X ) = ϕ−1
θ ◦ ϕθ? (ε).
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Parallel with warped curves

ϕθ(t) = t + θ
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We have Z (θ?) = ε.
→ Align the distribution of Z (θ) on the distribution of ε by
varying θ. Minimization of a D.T.W. criterion.

→ Which cost function? Requires a distance between probabilities.
Utilization of the Wasserstein distance related to problems of
mass transport.
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Presentation of the model

Observations : {
εi1 1 6 i 6 n
Xi = ϕθ? (εi2) 1 6 i 6 n

(1)

structure : (εij)16i6n
j=1,2

i.i.d. following the law µ,

deformation parameter : θ? where θ? ∈ Θ ⊂ Rd ,

deformation function : ϕθ : ]a; b[→ ]c; d [ invertible for θ ∈ Θ,

Empirical distribution of the i.i.d. sample (εi1)16i6n : µn1 .
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For θ ∈ Θ we define

Zi (θ) = ϕ−1
θ (Xi ) = ϕ−1

θ ◦ ϕθ? (εi2)

Distribution of Z1 (θ) : µ? (θ) = µ ◦ ϕ−1
θ? ◦ ϕθ ,

Empirical distribution of the i.i.d. sample (Z1 (θ) , . . . ,Zn (θ)):
µn? (θ) = 1

n

∑n
i=1 1Zi (θ).

⇒ Recover θ? by minimizing the energy needed to align the
distribution µ? (θ) on µ :µ? (θ?) = µ.
Wasserstein distance to quantify the alignment.
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Wasserstein distance

Set W2 (R) =
{
P probability on R,

∫
R x2dP <∞

}
.

For P,Q ∈ W2 (R) with respective distribution function F and G ,
their Wasserstein distance is

W 2
2 (P,Q) =

∫ 1

0

(
F−1 (t)− G−1 (t)

)2
dt. (2)

If P and Q are defined on more general metric space (S , d) with a
moment of order 2 :

W 2
2 (P,Q) = inf

X∼P,Y∼Q
E
[
d(X ,Y )2

]

Set Xn ∼ Pn,X ∼ P.

Then W2 (Pn,P)→ 0 ⇐⇒
{

Xn ⇀ X
E
[
X 2
n

]
→ E

[
X 2
]



Introduction The model Consistency Convergence in distribution Examples

Wasserstein distance

Set W2 (R) =
{
P probability on R,

∫
R x2dP <∞

}
.

For P,Q ∈ W2 (R) with respective distribution function F and G ,
their Wasserstein distance is

W 2
2 (P,Q) =

∫ 1

0

(
F−1 (t)− G−1 (t)

)2
dt. (2)

If P and Q are defined on more general metric space (S , d) with a
moment of order 2 :

W 2
2 (P,Q) = inf

X∼P,Y∼Q
E
[
d(X ,Y )2

]

Set Xn ∼ Pn,X ∼ P.

Then W2 (Pn,P)→ 0 ⇐⇒
{

Xn ⇀ X
E
[
X 2
n

]
→ E

[
X 2
]



Introduction The model Consistency Convergence in distribution Examples

Wasserstein distance

Set W2 (R) =
{
P probability on R,

∫
R x2dP <∞

}
.

For P,Q ∈ W2 (R) with respective distribution function F and G ,
their Wasserstein distance is

W 2
2 (P,Q) =

∫ 1

0

(
F−1 (t)− G−1 (t)

)2
dt. (2)

If P and Q are defined on more general metric space (S , d) with a
moment of order 2 :

W 2
2 (P,Q) = inf

X∼P,Y∼Q
E
[
d(X ,Y )2

]

Set Xn ∼ Pn,X ∼ P.

Then W2 (Pn,P)→ 0 ⇐⇒
{

Xn ⇀ X
E
[
X 2
n

]
→ E

[
X 2
]



Introduction The model Consistency Convergence in distribution Examples

The estimators

To quantify the alignment of the measures, consider the criterion

M (θ) = W 2
2 (µ? (θ) , µ) (3)

Characterisation of θ? : minΘ M = 0 = M (θ?) .
→ Empirical version :

Mn (θ) = W 2
2 (µn? (θ) , µn1)
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with the order statistics

Mn (θ) =
1

n

n∑
i=1

[
Z(i) (θ)− ε(i)1

]2
. (4)

Leads to the M-estimator for the deformation parameters

Estimator of θ?

θ̂n ∈ argminθ∈ΘMn (θ) . (5)

We have ϕ−1

θ̂n
(Xi ) = ϕ−1

θ̂n
◦ ϕθ? (εi2) ≈ εi2, following the unknown

law µ.

Plugg-in estimator of µ

µ̂n =
1

n

n∑
i=1

1ϕ−1

θ̂n
(Xi )

(6)

Idea : ”increase” the size of (εi1)16i6n  µ̃n = 1
2 (µ̂n + µn1)
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Principle of M-estimation

→ Convergence criterion for estimators defined as minimizers of a
random functional Mn on a set Θ.

Mn (θ)
n→∞−−−→ M (θ)

min ↑ min ↑
θ̂n

?−→ θ?

Consistency criterion

If M is a deterministic function,

supθ∈Θ |Mn (θ)−M (θ)| n→∞−−−→ 0 in probability,

∀δ > 0 infθ∈Θ∩B(θ?,δ)c M (θ) > M (θ?)

then θ̂n
n→∞−−−→ θ? in probability.
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Assumptions

Laws considered are defined on subsets of R and ∀θ ∈ Θ,
µ? (θ) ∈ W2 (R).
⇒ Computation of the Wasserstein distance.

Regularity C 1 of ϕ−1
θ (x) with respect to θ ∈ Θ. The family{

∂ϕ−1
θ

(
· )}θ∈Θ has an envelop in L2 (X ) :

sup
θ∈Θ

∥∥∂ϕ−1
θ (x)

∥∥ 6 H(x) with H ∈ L2 (X )

⇒ Control the distance between µ?
(
θ1
)

and µ?
(
θ2
)

for
θ1, θ2 ∈ Θ.

Θ compact and convex subset of Rd .
⇒ Uniform convergence and Taylor expansion.

Identifiability condition : for all θ 6= θ?, ϕ−1
θ ◦ ϕθ? 6= Id on a

set of positive µ-measure.
⇒ Uniqueness of the minimizer of the function M.
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Consistency results

Deformation estimator

θ̂n ∈ argminθ∈ΘMn (θ) :

Theorem

Under previous assumptions θ̂n converges in probability to θ?.

Measure estimator

µ̂n = 1
n

∑n
i=1 1ϕ−1

θ̂n
(Xi )

Theorem

Under previous assumptions

W2 (µ̂n, µ)
n→∞−−−→ 0 in probability.
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Assumptions

In addition to the previous assumptions, we assume

More regularity : ϕ−1 is C 2 with respect to its two variables
(θ, x).

The distribution of X has a compact support with distribution
function F? C 1. We assume F ′? := f? > 0 on its support.

⇒ The distribution function F associated with the law µ (law of ε)
has a compact support and is C 1 with F ′ = f > 0.
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Result

Set Φ =
∫ 1

0 ∂ϕ
−1
θ?

(
F−1
? (t)

)2
dt ∈ Rd×d .

Theorem

Under previous assumptions and if Φ is invertible, then

√
n
(
θ̂n − θ?

)
⇀ Φ−1

∫ 1

0

∂ϕ−1
θ?

(
F−1
? (t)

)
f (F−1(t))

[G2(t)−G1(t)] dt

where G1 and G2 are independent standard Brownian bridges.
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Idea of proof

→ Remains to study Ψ (F n,F n
? ) where F n (resp. F n

? ) is the
empirical distribution function associated with the sample
(εi1)16i6n (resp. (Xi )16i6n ).

Convergence of the empirical distribution functions :

Theorem (Donsker)

If Y1, . . . ,Yn are i.i.d. random variables with distribution function
F and empirical distribution function Fn, the sequence√
n (Fn − F ) converges in law in S, the space of function cadlag on

R̄ endowed with the norm ‖·‖∞ to G ◦ F where G is a standard
Brownian bridge.

⇒ Application of a Delta-method.
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Examples

Example 1 : Translation model

ϕθ (x) = x + θ

⇒ µ ∈ W2 (R), and Θ ⊂ R compact interval.

{
εi1
Xi = θ? + εi2

1 6 i 6 n

θ̂n =
1

n

n∑
i=1

Xi −
1

n

n∑
i=1

εi1 = θ? −

[
1

n

n∑
i=1

εi2 −
1

n

n∑
i=1

εi1

]
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Example 2 : Logit model

ϕθ (x) =
1

1 + exp (θx)

⇒ µ ∈ W2 (R) and Θ compact interval of ]−∞; 0[.

{
εi1
Xi = 1

1+θ?εi2

1 6 i 6 n

θ̂n =

∑n
i=1 ln

(
1−X(i)

X(i)

)2

∑n
i=1 ln

(
1−X(i)

X(i)

)
ε(i)1

= θ?

∑n
i=1 ε

2
(i)2∑n

i=1 ε(i)2ε(i)1
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Example 3: Location/scale model

ϕθ (x) = θ2x + θ1

⇒ µ ∈ W2 (R) and Θ compact in R×]0; +∞[ .

→ Scale model {
εi1
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Gallòn-Loubes-Maza-[2011] : S. Gallòn, J-M Loubes, E.
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