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Introduction

What is Aging?

Chronological Age: A measure of the time elapsed since
the birth of an individual.

Actuarial Age: A predictor of the occurrence of death.
Physiological Age: The process of accumulation of
damages in cells and organisms.

Comments: These three definitions of aging:

• Can support divergent predictions,
• Express the focus on the statistical laws,
• By no means should be understood as a divergence.



Computational Bayesian Tools for Modeling the Aging Process

Introduction

What is Aging?

Chronological Age: A measure of the time elapsed since
the birth of an individual.
Actuarial Age: A predictor of the occurrence of death.

Physiological Age: The process of accumulation of
damages in cells and organisms.

Comments: These three definitions of aging:

• Can support divergent predictions,
• Express the focus on the statistical laws,
• By no means should be understood as a divergence.



Computational Bayesian Tools for Modeling the Aging Process

Introduction

What is Aging?

Chronological Age: A measure of the time elapsed since
the birth of an individual.
Actuarial Age: A predictor of the occurrence of death.
Physiological Age: The process of accumulation of
damages in cells and organisms.

Comments: These three definitions of aging:

• Can support divergent predictions,
• Express the focus on the statistical laws,
• By no means should be understood as a divergence.



Computational Bayesian Tools for Modeling the Aging Process

Introduction

What is Aging?

Chronological Age: A measure of the time elapsed since
the birth of an individual.
Actuarial Age: A predictor of the occurrence of death.
Physiological Age: The process of accumulation of
damages in cells and organisms.

Comments: These three definitions of aging:
• Can support divergent predictions,
• Express the focus on the statistical laws,
• By no means should be understood as a divergence.



Computational Bayesian Tools for Modeling the Aging Process

Introduction

Bacteria Do Age

Cell division in the bacterium E. Coli

The life cycle of E. Coli, E. J. Stewart et al., PLoS Biol. , 2005

Replicative Age: The number of generations since the old
pole arose.
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Introduction

Replicative Age Properties

Increased replicative age known to be associated with
defective growth.

Average lineage showing old pole effect on growth rate, E. J. Stewart et al., PLoS Biol. , 2005

But accounts for a limited fraction of the observed variance
in the physiological characteristics.
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Introduction

Idea Behind Modeling Aging

Challenge: Infer the extent of the asymmetry in the
process of the inheritance of damages, using the growth
rates as noisy observations of the amount damages.

Is there a rejuvenation mechanism?
Are damages transmitted evenly to daughter cells?
How can we quantify a potential asymmetry?
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Introduction

Data Description

Experiment: a colony of E. coli monitored up to 9
generations.

E. Coli image, J. Guyon et al., ESAIM: Proceedings , 2005

Data:
• A lineage tree reconstructed from a movie by computer

vision methods.
• An estimated growth rate for each cell.

Model: Reconstruct a quantity that explains the
physiological variability, as a physical quantity and which
grows independently from the cell growth.
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Statistical Modeling

Physical variables of the model

• xi(t): Amount of accumulated damages in cell i at time t ,
hidden,
• γi : Growth rate of cell i , seen as a noisy observation of

xi(t) at birth time of cell i ,
• ti : Date of division of cell i ,
• Ti : Time elapsed between the formation of the cell i and

its division,
• Indexing convention: daughters of cell i are indexed

2i + 1 and 2i + 2.
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Statistical Modeling

Dynamics of the hidden variable

• x grows according to a drifting Brownian motion:

dxi(t)
dt

= µx + σx
dWt

dt
⇒

xi(Ti) = µxTi + N (0, σ2
x T 2

i )

• x is spread across daughter cells at division, picking a
rejuvenated cell randomly (δ ∼ B(0.5)):

x2i+1+δi (ti) | δi , xi(ti) ∼ xi(ti)× Beta(βrejuvenated , βaged)

x2i+2(ti) + x2i+1(ti) = xi(ti)
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Statistical Modeling

Further specifications

Observations

γ2i+1 ∼ Gamma(10, 1
x2i+1(ti )

)

Prior distributions

µx ∼ Gamma(2, 1)
σx ∼ Gamma(5, 0.1)

(βrejuvenated , βaged)
βrej <βaged∼ Gamma(2, 10)×Gamma(2, 10)

Quantities of interest
• The parameter, θ = (µx , σ

2
x , βrejuvenated , βaged ).

• The split ratio, r =
βrejuvenated

βrejuvenated +βaged
.
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ABC Approach

Background

Bayesian Inference: is focused on the posterior
distribution π(θ | y) ∝ f (y | θ)π(θ) of a parameter vector θ
under the prior distribution π(·) through the likelihood
function f (· | θ) having observed data y .

Approximate Bayesian Computation (ABC) :

• Avoids intractable likelihood functions.

• Draws samples from an approximate posterior distribution

• Still feasible to simulate data from the model/likelihood.
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ABC Approach

ABC Methodology

Algorithm 1 Likelihood-free ABC rejection sampler 1
1: Draw parameters θ = (µx , σx , βrejuvenated , βaged) ∼ π.
2: Simulate synthetic data z using these parameter values from

the likelihood.
3: If z = y accept the parameters, else reject.
4: Repeat

Outcome:
f (θi) ∝

∑
z π(θi)f (z|θi)Iy (z) = π(θi)f (y |θi) ∝ π(θi |y)
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ABC Approach

ABC Algorithms I

Extension to the case of the continuous sample spaces.

Algorithm 2 Likelihood-free ABC rejection sampler 2

1: Draw parameters θ = (µx , σx , βrejuvenated , βaged) ∼ π.
2: Simulate synthetic data z using these parameter values from

the model f (· | θ).
3: If d(η(z), η(y)) < ε accept the parameters, else reject.
4: Repeat

Specifications:
• η: a function defining a statistic; often not sufficient,
• d : a distance,
• ε: a tolerance level.
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ABC Approach

A as Approximate

π(θ | ηobs) ≈ π(θ | yobs) where π(θ | ηobs) ∝ π(ηobs | θ)π(θ).

πε(θ|y) =
∫
πε(θ, z|y)dz ≈ π(θ|y)
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ABC Approach

Outcome

The likelihood-free samples from the marginal in z

πε(θ, z|y) =
π(θ)f (z|θ)IAε,y (z)∫

Aε,y×Θ π(θ)f (z|θ) dz dθ

where Aε,y = {z ∈ D|d(η(z), η(y)) < ε}.

The idea behind ABC is that using representative summary
statistics with a small tolerance level should produce a
good approximation to the posterior.
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ABC Approach

ABC Algorithms II

Using simulations from the prior distribution is inefficient.

Algorithm 3 Likelihood-free ABC MCMC sampler

1: Use Algorithm 1 to get a realization (θ0, z0) from the ABC
target distribution πε(θ, z|y).

2: Draw parameters from a Markov truncated-normal kernel
θ′ ∼ q(·|θt−1).

3: Simulate synthetic data z ′ using these parameter values.
4: Draw u ∼ U[0,1].
5: If

u 6
π(θ′)q(θt−1|θ′)
π(θt−1)q(θ′|θt−1)

and d(η(z ′), η(y)) < ε

accept the parameters, else reproduce.
6: Repeat from stage 2.
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ABC Approach

ABC Applied in Aging

Motivation:
• P (x |µx , σx , βrejuvenated , βaged ) is difficult to compute.
• Avoids the combinatorial explosion when marginalizing δ.

Artificial Dataset

• The number of cells is 255; 7 generations.

• All times to division are set to 1.

• The values of the parameters are set to (µx , σx) = (1, 0.1)
and (βr , βa) = { (10,15), (15,15), (2,3), (3,3) }.
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Applied ABC to Aging

Calibration of ABC in Aging 1

Summary Statistics
• Introduce x̂i = 1

γi

• Reorder x̂ so that γ2i+2 < γ2i+1
• Define the following statistics

η1 = mean [
x̂2i+1 + x̂2i+2 − x̂i

Ti
]

η2 = sd [
x̂2i+1 + x̂2i+2 − x̂i

Ti
]

η3 = mean [
x̂2i+1

x̂2i+1 + x̂2i+2
]

η4 = sd [
x̂2i+1

x̂2i+1 + x̂2i+2
]
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Applied ABC to Aging

Calibration of ABC in Aging 2

The distance d is the euclidean, normalized by the a priori
standard deviation of each component.

w1[η1(Dobs) − η1(Dsynth)] + . . .+ w4[η1(Dobs) − η4(Dsynth)]

where
∑4

i=1 w1[ηi(Dobs) − ηi(Dsynth)] = 1 under the prior.
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Applied ABC to Aging

In presence of asymmetry

(βrejuvenated , βaged) = (10, 15)

Split ratio
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Applied ABC to Aging

In absence of asymmetry

(βrejuvenated , βaged) = (15, 15)

Split ratio

Split ratio

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

Figura: Split ratio

Split parameter

Split
parameter for rejuvenated cells

D
en

si
ty

0 20 40 60 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figura: βrejuvenated

Drift of x

Drift value

D
en

si
ty

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figura: µx

Variance of x

Variance

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
00

0.
05

0.
10

0.
15

0.
20

Figura: σx



Computational Bayesian Tools for Modeling the Aging Process

Applied ABC to Aging

In case of broadly distributed splits

(βrejuvenated , βaged) = { (2, 3), (3, 3) }

Split ratio

Posterior samples (grey) vs. prior distribution (red).
Split ratio
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Applied ABC to Aging

Comments

The method recognizes pretty well the presence or
absence of asymmetry.

For weak asymmetries (β < 10), the simulated posterior is
wrong.

Using an MCMC-ABC did not show any improvement.

Extensions:
• Modeling: Introduction of a hidden aging-switch parameter,
δi .

• Methodology: Monte Carlo Markov Chain.
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Applied ABC to Aging

Updated Model

Introducing the Aging-Switch Parameter δi

xb
0 = 1 (1)

xd
i = xb

i + T N (µxTi , σ
2
x T 2

i ) (2)
δi ∼ Bernoulli(0.5 ) (3)

xb
2i+1(ti) | δi = 1, xd

i (ti) ∼ xd
i (ti)× Beta(βr , βa) (4)

xb
2i+1(ti) | δi = 2, xd

i (ti) ∼ xd
i (ti)× Beta(βa, βr ) (5)

xb
2i+2(ti) + xb

2i+1(ti) = xd
i (ti) (6)

γb
i ∼ Gamma(10,

1
xb

i (ti)
) (7)
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Applied ABC to Aging

Updated Model

Prior Distributions

Quantities of interest
• The parameter, θ = (µx , σ

2
x ).

• The split ratio, r =
βrejuvenated

βrejuvenated +βaged
.

The priors:

µx ∼ Gamma(2, 1)
σx ∼ Gamma(5, 0.1)

(βr , βa)
βrej<βaged∼ Gamma(2, 10)×Gamma(2, 10)
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Applied ABC to Aging

Updated Model

Modeling Specifications

Aging - Switch parameter δi :
P(δi = 1) = 1− P(δi = 2) = 0.5

The exact distribution of xb
2i+1 | δi = 1, xd

i :

fxb
2i+1

( xb
2i+1 | δi = 1, xd

i ) = f xb
2i+1
xd
i

(
xb

2i+1
xd

i
) 1

xd
i

= (
xb

2i+1
xd

i
)βr−1(1− xb

2i+1
xd

i
)βa−1 1

B(βr ,βa)xd
i
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Applied ABC to Aging
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Applied ABC to Aging

Updated Model

Results

Real dataset
24 parallel processes
108 simulations, 10−5 acceptance ratio

Split ratio

Posterior distribution (grey) vs. Prior distribution (red), true value is 0.5.
Split ratio
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Applied ABC to Aging

Thank you for your attention !
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MCMC Approach

MCMC Background

Definition
• A class of methods which generate a Markov Chain whose

stationary distribution is the distribution of interest.
• An approximate sample from the posterior distribution

without having to sample from this distribution directly.

Practical Techniques for Convergence
• Burn-in: Influence the time of convergence by discarding a

number of iterations at the early stage of the sampling
process.

• Thinning: Reduce the dependance between the draws of
the Markov Chain by building a subchain which keeps only
every d-th draw.
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MCMC Approach

Gibbs Sampling

Sampling from a posterior distribution p(θ | y).

Algorithm 4 Gibbs Sampler

1: Choose a vector of starting values θ(0).
2: Start with any θ. Draw a value θ

(1)
1 from the full conditional

p(θ1 | θ
(0)
2 , . . . , θ

(0)
i , . . . , θ

(0)
k , y).

3: Draw a value θ(0)
i from p(θi | θ

(1)
1 , . . . , θ

(1)
i−1, θ

(0)
i+1, . . . , θ

(0)
k , y) by

using the most updated values for the other parameters until
i = k .

4: Draw θ(2) using θ(1) and continually using the most updated
values.

5: Repeat until we get M draws, with each draw being a vector
θ(i).

6: Optional burn-in and/or thinning.
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MCMC Approach

Full Conditionals Calculation

1 Write out the full posterior distribution ignoring constants of
proportionality.

2 Pick a block of parameters and drop everything that
doesn’t depend on that parameter.

3 Use the knowledge of distributions to determine the
distribution of the full conditional.

4 Repeat the previous steps for all parameters.
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MCMC Approach

Metropolis-Hastings Algorithm

If the full conditionals do not look like any known distribution.

Algorithm 5 Metropolis - Hastings Algorithm

1: Choose a starting value θ(0).
2: At iteration t, draw a candidate θ∗ from a jumping distribution

Jt(θ
∗ | θ(t−1)).

3: Compute an acceptance ratio (probability):

r =
π(θ∗ | y) / Jt(θ

∗ | θ(t−1))

π(θ(t−1) | y) / Jt(θ(t−1) | θ∗)

4: Accept θ∗ as θ(t) with probability min(r ,1). If θ∗ is not
accepted, then θ(t) = θ(t−1).

5: Repeat steps 2-4 M times to get M draws from π(θ | y), with
optional burn-in and/or thinning.
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Applied MCMC to Aging

Likelihood Computation - Example

Partial Lineage
Tree

Likelihood

L = P( xb
0 ) × P( xd

0 | x
b
0 )×

P( xb
1 | x

d
0 ) × P( xd

1 | x
b
1 )×

δ{xd
0−xb

1 }
( xb

2 ) × P( xd
2 | x

d
0 − xb

1 )×
P( xb

3 | x
d
1 ) ×

δ{xd
1−xb

3 }
( xb

4 ) ×
P( xb

5 | xd
2 ) ×

δ{xd
2−xb

5 }
( xb

6 )
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Applied MCMC to Aging

Likelihood - General Form

L = P(xb
0 ) ×

∏nbobs−1
i=0 P(xd

i | x
b
i )×∏

δi =1[P(xb
2i+1 | x

d
i ) δ{xd

i −xb
2i+1}

(xb
2i+2) ]×∏

δi =2[P(xb
2i+1 | x

d
i ) δ{xd

i −xb
2i+1}

(xb
2i+2) ]

= 1 ×
∏nbobs−1

i=0 [ 1
1−Φ(0,µx ,σx )

1
σx Ti
√

2π
exp {− [xd

i −(xb
i +µx Ti )]2

2σ2
x T 2

i
} ]×

∏
δi =1[

(xb
2i+1)βr −1(xd

i −xb
2i+1)βa−1

(xd
i )βr +βa−1B(βr , βa)

× δ{xd
i −xb

2i+1}
(xb

2i+2) ]×

∏
δi =2[

(xb
2i+1)βa−1(xd

i −xb
2i+1)βr −1

(xd
i )βr +βa−1B(βa, βr )

× δ{xd
i −xb

2i+1}
(xb

2i+2) ]
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Applied MCMC to Aging
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Figura: Number of iterations: 106, burn-in= 103, thin = 100,
candidate standard deviations = (0.1,0.005,0.1,0.1),
(βr , βa) = (10,15).
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Absence of Asymmetry - Sampling Paths
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Figura: Number of iterations: 104, burn-in= 0, thin = 1, candidate
standard deviations = (0.1,0.1,0.1,0.1), (βr , βa) = (15,15).
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Presence of Weak Asymmetry - Sampling Paths
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Figura: Number of iterations: 104, burn-in= 0, thin = 1, candidate
standard deviations = (0.1,0.1,0.1,0.1), (βr , βa) = (2,3).
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Figura: Number of iterations: 104, burn-in= 0, thin = 1, candidate
standard deviations = (0.1,0.1,0.1,0.1), (βr , βa) = (3,3).
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Posterior - Prior Histograms

Histogram of mu_x, Dataset 1
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Figura: True values: (µx , σ
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x ) = (1,0.1). Number of iterations: 106 .
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standard deviations = (0.1,0.1,0.1,0.1)
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