Computational Bayesian Tools for Modeling the Aging Process

S. Tsepletidou, P.-Y. Bourguignon Thesis Advisor: C.P. Robert

Paris-Dauphine University

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Introduction
- 2 Statistical Modeling
- 3 ABC Approach
- 4 Applied ABC to Aging

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Chronological Age: A measure of the time elapsed since the birth of an individual.

- Chronological Age: A measure of the time elapsed since the birth of an individual.
- Actuarial Age: A predictor of the occurrence of death.

Chronological Age: A measure of the time elapsed since the birth of an individual.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Actuarial Age: A predictor of the occurrence of death.
- Physiological Age: The process of accumulation of damages in cells and organisms.

- Chronological Age: A measure of the time elapsed since the birth of an individual.
- Actuarial Age: A predictor of the occurrence of death.
- Physiological Age: The process of accumulation of damages in cells and organisms.
- **Comments**: These three definitions of aging:
 - Can support divergent predictions,
 - Express the focus on the statistical laws,
 - By no means should be understood as a divergence.

Bacteria Do Age

Cell division in the bacterium E. Coli

The life cycle of E. Coli, E. J. Stewart et al., PLoS Biol. , 2005

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bacteria Do Age

Cell division in the bacterium E. Coli

The life cycle of E. Coli, E. J. Stewart et al., PLoS Biol. , 2005

Replicative Age: The number of generations since the old pole arose.

Replicative Age Properties

Increased replicative age known to be associated with defective growth.

Average lineage showing old pole effect on growth rate, E. J. Stewart et al., PLoS Biol. , 2005

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Replicative Age Properties

Increased replicative age known to be associated with defective growth.

Average lineage showing old pole effect on growth rate, E. J. Stewart et al., PLoS Biol. , 2005

But accounts for a limited fraction of the observed variance in the physiological characteristics.

Idea Behind Modeling Aging

Challenge: Infer the extent of the asymmetry in the process of the inheritance of damages, using the growth rates as noisy observations of the amount damages.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Idea Behind Modeling Aging

Challenge: Infer the extent of the asymmetry in the process of the inheritance of damages, using the growth rates as noisy observations of the amount damages.

> Is there a rejuvenation mechanism? Are damages transmitted evenly to daughter cells? How can we quantify a potential asymmetry?

> > (日) (日) (日) (日) (日) (日) (日)

Data Description

Experiment: a colony of *E. coli* monitored up to 9 generations.

E. Coli image, J. Guyon et al., ESAIM: Proceedings , 2005

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Data Description

Experiment: a colony of *E. coli* monitored up to 9 generations.

E. Coli image, J. Guyon et al., ESAIM: Proceedings , 2005

Data:

A lineage tree reconstructed from a movie by computer vision methods.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• An estimated growth rate for each cell.

Data Description

Experiment: a colony of *E. coli* monitored up to 9 generations.

E. Coli image, J. Guyon et al., ESAIM: Proceedings , 2005

Data:

- A lineage tree reconstructed from a movie by computer vision methods.
- An estimated growth rate for each cell.
- Model: Reconstruct a quantity that explains the physiological variability, as a physical quantity and which grows independently from the cell growth.

Statistical Modeling

Physical variables of the model

- *x_i*(*t*): Amount of accumulated damages in cell *i* at time *t*, **hidden**,
- *γ_i*: Growth rate of cell *i*, seen as a noisy observation of
 x_i(*t*) at birth time of cell *i*,
- *t_i*: Date of division of cell *i*,
- *T_i*: Time elapsed between the formation of the cell *i* and its division,
- Indexing convention: daughters of cell *i* are indexed 2i + 1 and 2i + 2.

-Statistical Modeling

Dynamics of the hidden variable

• *x* grows according to a drifting Brownian motion:

$$\frac{\mathrm{d}x_i(t)}{\mathrm{d}t} = \mu_x + \sigma_x \frac{\mathrm{d}W_t}{\mathrm{d}t} \Rightarrow x_i(T_i) = \mu_x T_i + \mathcal{N}(0, \sigma_x^2 T_i^2)$$

 x is spread across daughter cells at division, picking a rejuvenated cell randomly (δ ~ B(0.5)):

Computational Bayesian Tools for Modeling the Aging Process

Statistical Modeling

Further specifications

Observations

$$\gamma_{2i+1} \sim Gamma(10, \frac{1}{x_{2i+1}(t_i)})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

-Statistical Modeling

Further specifications

Observations

$$\gamma_{2i+1} \sim \textit{Gamma}(10, \frac{1}{x_{2i+1}(t_i)})$$

Prior distributions

$$\mu_{x} \sim Gamma(2, 1)$$

 $\sigma_{x} \sim Gamma(5, 0.1)$
 $(\beta_{rejuvenated}, \beta_{aged}) \stackrel{\beta_{rej} < \beta_{aged}}{\sim} Gamma(2, 10) \times Gamma(2, 10)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Statistical Modeling

Further specifications

Observations

$$\gamma_{2i+1} \sim Gamma(10, \frac{1}{x_{2i+1}(t_i)})$$

Prior distributions

$$\mu_{x} \sim Gamma(2, 1)$$

$$\sigma_{x} \sim Gamma(5, 0.1)$$

$$\beta_{rejuvenated}, \beta_{aged} \qquad \beta_{rej} < \beta_{aged} \qquad Gamma(2, 10) \times Gamma(2, 10)$$
Quantities of interest

• The parameter,
$$\theta = (\mu_x, \sigma_x^2, \beta_{rejuvenated}, \beta_{aged})$$
.

• The split ratio,
$$r=rac{eta_{rejuvenated}}{eta_{rejuvenated}+eta_{aged}}$$

Background

Bayesian Inference: is focused on the posterior distribution $\pi(\theta | y) \propto f(y | \theta)\pi(\theta)$ of a parameter vector θ under the prior distribution $\pi(\cdot)$ through the likelihood function $f(\cdot | \theta)$ having observed data *y*.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Background

Bayesian Inference: is focused on the posterior distribution $\pi(\theta | y) \propto f(y | \theta)\pi(\theta)$ of a parameter vector θ under the prior distribution $\pi(\cdot)$ through the likelihood function $f(\cdot | \theta)$ having observed data *y*.

Approximate Bayesian Computation (ABC) :

- Avoids intractable likelihood functions.
- Draws samples from an approximate posterior distribution
- Still feasible to simulate data from the model/likelihood.

ABC Methodology

Algorithm 1 Likelihood-free ABC rejection sampler 1

- 1: Draw parameters $\theta = (\mu_x, \sigma_x, \beta_{rejuvenated}, \beta_{aged}) \sim \pi$.
- 2: Simulate synthetic data *z* using these parameter values from the likelihood.

(日) (日) (日) (日) (日) (日) (日)

- 3: If z = y accept the parameters, else reject.
- 4: Repeat

Outcome:

 $f(\theta_i) \propto \sum_{z} \pi(\theta_i) f(z|\theta_i) \mathbb{I}_{y}(z) = \pi(\theta_i) f(y|\theta_i) \propto \pi(\theta_i|y)$

ABC Algorithms I

Extension to the case of the continuous sample spaces.

Algorithm 2 Likelihood-free ABC rejection sampler 2

- 1: Draw parameters $\theta = (\mu_x, \sigma_x, \beta_{rejuvenated}, \beta_{aged}) \sim \pi$.
- 2: Simulate synthetic data *z* using these parameter values from the model $f(\cdot | \theta)$.
- 3: If $d(\eta(z), \eta(y)) < \epsilon$ accept the parameters, else reject.
- 4: Repeat

Specifications:

η: a function defining a statistic; often not sufficient,

- d: a distance,
- ϵ : a tolerance level.

A as Approximate

$\blacksquare \pi(\theta \,|\, \eta_{obs}) \approx \pi(\theta \,|\, y_{obs}) \text{ where } \pi(\theta \,|\, \eta_{obs}) \propto \pi(\eta_{obs} \,|\, \theta) \pi(\theta).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A as Approximate

$\blacksquare \pi(\theta \mid \eta_{obs}) \approx \pi(\theta \mid y_{obs}) \text{ where } \pi(\theta \mid \eta_{obs}) \propto \pi(\eta_{obs} \mid \theta) \pi(\theta).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\blacksquare \pi_{\epsilon}(heta|y) = \int \pi_{\epsilon}(heta, z|y) \, dz \, pprox \, \pi(heta|y)$$

Outcome

The likelihood-free samples from the marginal in z $\pi_{\epsilon}(\theta, z|y) = \frac{\pi(\theta)f(z|\theta)\mathbb{I}_{A_{\epsilon,y}}(z)}{\int_{A_{\epsilon,y}\times\Theta}\pi(\theta)f(z|\theta)\,dz\,d\theta}$ where $A_{\epsilon,y} = \{z \in \mathcal{D} | d(\eta(z), \eta(y)) < \epsilon\}.$

Outcome

The likelihood-free samples from the marginal in z

$$\pi_{\epsilon}(\theta, z | y) = \frac{\pi(\theta) f(z|\theta) \mathbb{I}_{A_{\epsilon,y}(z)}}{\int_{A_{\epsilon,y} \times \Theta} \pi(\theta) f(z|\theta) \, dz \, d\theta}$$

where $A_{\epsilon,y} = \{ z \in \mathcal{D} | d(\eta(z), \eta(y)) < \epsilon \}.$

The idea behind ABC is that using representative summary statistics with a small tolerance level should produce a good approximation to the posterior.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ABC Algorithms II

Using simulations from the prior distribution is inefficient.

Algorithm 3 Likelihood-free ABC MCMC sampler

- 1: Use Algorithm 1 to get a realization (θ_0, z_0) from the ABC target distribution $\pi_{\epsilon}(\theta, z|y)$.
- 2: Draw parameters from a Markov truncated-normal kernel $\theta' \sim q(\cdot | \theta_{t-1}).$
- 3: Simulate synthetic data z' using these parameter values.
- 4: Draw $u \sim \mathcal{U}_{[0,1]}$.
- 5: If

$$u \leqslant \frac{\pi(\theta')q(\theta_{t-1}|\theta')}{\pi(\theta_{t-1})q(\theta'|\theta_{t-1})}$$

and
$$d(\eta(z'),\eta(y)) < \epsilon$$

accept the parameters, else reproduce.

6: Repeat from stage 2.

ABC Applied in Aging

Motivation:

- $\mathbb{P}(\mathbf{x} \mid \mu_{\mathbf{x}}, \sigma_{\mathbf{x}}, \beta_{rejuvenated}, \beta_{aged})$ is difficult to compute.
- Avoids the combinatorial explosion when marginalizing δ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ABC Applied in Aging

Motivation:

- $\mathbb{P}(\mathbf{x} \mid \mu_{\mathbf{x}}, \sigma_{\mathbf{x}}, \beta_{rejuvenated}, \beta_{aged})$ is difficult to compute.
- Avoids the combinatorial explosion when marginalizing δ.

Artificial Dataset

- The number of cells is 255; 7 generations.
- All times to division are set to 1.
- The values of the parameters are set to $(\mu_x, \sigma_x) = (1, 0.1)$ and $(\beta_r, \beta_a) = \{ (10, 15), (15, 15), (2, 3), (3, 3) \}.$

Calibration of ABC in Aging 1

Summary Statistics

- Introduce $\hat{x}_i = \frac{1}{\gamma_i}$
- Reorder \hat{x} so that $\gamma_{2i+2} < \gamma_{2i+1}$
- Define the following statistics

$$\begin{split} \eta_1 &= mean \big[\frac{\hat{x}_{2i+1} + \hat{x}_{2i+2} - \hat{x}_i}{T_i} \big] \\ \eta_2 &= sd \big[\frac{\hat{x}_{2i+1} + \hat{x}_{2i+2} - \hat{x}_i}{T_i} \big] \\ \eta_3 &= mean \big[\frac{\hat{x}_{2i+1}}{\hat{x}_{2i+1} + \hat{x}_{2i+2}} \big] \\ \eta_4 &= sd \big[\frac{\hat{x}_{2i+1}}{\hat{x}_{2i+1} + \hat{x}_{2i+2}} \big] \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Calibration of ABC in Aging 2

The distance d is the euclidean, normalized by the a priori standard deviation of each component.

$$w_1[\eta_1(D_{obs}) - \eta_1(D_{synth})] + \ldots + w_4[\eta_1(D_{obs}) - \eta_4(D_{synth})]$$

where $\sum_{i=1}^4 w_1[\eta_i(D_{obs}) - \eta_i(D_{synth})] = 1$ under the prior.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In presence of asymmetry

$$(\beta_{rejuvenated}, \beta_{aged}) = (10, 15)$$

In absence of asymmetry

$$(\beta_{rejuvenated}, \beta_{aged}) = (15, 15)$$

ъ

In case of broadly distributed splits

$$(\beta_{rejuvenated}, \beta_{aged}) = \{(2, 3), (3, 3)\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

0.5
Applied ABC to Aging

Comments

The method recognizes pretty well the presence or absence of asymmetry.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Applied ABC to Aging

Comments

- The method recognizes pretty well the presence or absence of asymmetry.
- For weak asymmetries (β < 10), the simulated posterior is wrong.</p>

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Applied ABC to Aging

Comments

- The method recognizes pretty well the presence or absence of asymmetry.
- For weak asymmetries (β < 10), the simulated posterior is wrong.</p>

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Using an MCMC-ABC did not show any improvement.

Applied ABC to Aging

Comments

- The method recognizes pretty well the presence or absence of asymmetry.
- For weak asymmetries (β < 10), the simulated posterior is wrong.</p>
- Using an MCMC-ABC did not show any improvement.

Extensions:

- Modeling: Introduction of a hidden *aging-switch* parameter, δ_i .
- Methodology: Monte Carlo Markov Chain.

Applied ABC to Aging

Updated Model

Introducing the Aging-Switch Parameter δ_i

$$\begin{aligned}
x_{0}^{b} &= 1 & (1) \\
x_{i}^{d} &= x_{i}^{b} + \mathcal{TN}(\mu_{x}T_{i}, \sigma_{x}^{2}T_{i}^{2}) & (2) \\
\delta_{i} &\sim Bernoulli(0.5) & (3) \\
x_{2i+1}^{b}(t_{i}) \mid \delta_{i} = 1, x_{i}^{d}(t_{i}) &\sim x_{i}^{d}(t_{i}) \times Beta(\beta_{r}, \beta_{a}) & (4) \\
x_{2i+1}^{b}(t_{i}) \mid \delta_{i} = 2, x_{i}^{d}(t_{i}) &\sim x_{i}^{d}(t_{i}) \times Beta(\beta_{a}, \beta_{r}) & (5) \\
x_{2i+2}^{b}(t_{i}) + x_{2i+1}^{b}(t_{i}) &= x_{i}^{d}(t_{i}) & (6) \\
\gamma_{i}^{b} &\sim Gamma(10, \frac{1}{x_{i}^{b}(t_{i})}) & (7)
\end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Applied ABC to Aging

Updated Model

Prior Distributions

- Quantities of interest
 - The parameter, $\theta = (\mu_x, \sigma_x^2)$.
 - The split ratio, $r = \frac{\beta_{rejuvenated}}{\beta_{rejuvenated} + \beta_{aged}}$.

The priors:

Applied ABC to Aging

Updated Model

Modeling Specifications

Aging - Switch parameter
$$\delta_i$$
:
 $\mathbb{P}(\delta_i = 1) = 1 - \mathbb{P}(\delta_i = 2) = 0.5$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Applied ABC to Aging

Updated Model

Modeling Specifications

Aging - Switch parameter
$$\delta_i$$
:
 $\mathbb{P}(\delta_i = 1) = 1 - \mathbb{P}(\delta_i = 2) = 0.5$

• The exact distribution of $x_{2i+1}^b | \delta_i = 1, x_i^d$:

$$\begin{split} f_{x_{2i+1}^{b}}(x_{2i+1}^{b} \mid \delta_{i} = 1, \, x_{i}^{d}) &= f_{x_{2i+1}^{b} \atop x_{i}^{d}}(\frac{x_{2i+1}^{b}}{x_{i}^{d}})\frac{1}{x_{i}^{d}} \\ &= (\frac{x_{2i+1}^{b}}{x_{i}^{d}})^{\beta_{r}-1}(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}})^{\beta_{a}-1}\frac{1}{B(\beta_{r},\beta_{a})x_{i}^{d}} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Applied ABC to Aging

Updated Model

- Real dataset
- 24 parallel processes
- 10⁸ simulations, 10⁻⁵ acceptance ratio

Applied ABC to Aging

Thank you for your attention !

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MCMC Background

Definition

• A class of methods which generate a Markov Chain whose stationary distribution is the distribution of interest.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 An approximate sample from the posterior distribution without having to sample from this distribution directly.

MCMC Background

Definition

- A class of methods which generate a Markov Chain whose stationary distribution is the distribution of interest.
- An approximate sample from the posterior distribution without having to sample from this distribution directly.
- Practical Techniques for Convergence
 - *Burn-in*: Influence the time of convergence by discarding a number of iterations at the early stage of the sampling process.
 - Thinning: Reduce the dependance between the draws of the Markov Chain by building a subchain which keeps only every d-th draw.

Gibbs Sampling

Sampling from a posterior distribution $p(\theta | y)$.

Algorithm 4 Gibbs Sampler

- 1: Choose a vector of starting values $\theta^{(0)}$.
- 2: Start with any θ . Draw a value $\theta_1^{(1)}$ from the full conditional $p(\theta_1 | \theta_2^{(0)}, \dots, \theta_i^{(0)}, \dots, \theta_k^{(0)}, y)$.
- 3: Draw a value $\theta_i^{(0)}$ from $p(\theta_i | \theta_1^{(1)}, \dots, \theta_{i-1}^{(1)}, \theta_{i+1}^{(0)}, \dots, \theta_k^{(0)}, y)$ by using the most updated values for the other parameters until i = k.
- 4: Draw $\theta^{(2)}$ using $\theta^{(1)}$ and continually using the most updated values.
- 5: Repeat until we get M draws, with each draw being a vector $\theta^{(i)}$.
- 6: Optional burn-in and/or thinning.

Full Conditionals Calculation

 Write out the full posterior distribution ignoring constants of proportionality.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 2 Pick a block of parameters and drop everything that doesn't depend on that parameter.
- 3 Use the knowledge of distributions to determine the distribution of the full conditional.
- 4 Repeat the previous steps for all parameters.

Metropolis-Hastings Algorithm

If the full conditionals do not look like any known distribution.

Algorithm 5 Metropolis - Hastings Algorithm

- 1: Choose a starting value $\theta^{(0)}$.
- 2: At iteration *t*, draw a candidate θ^* from a jumping distribution $J_t(\theta^* | \theta^{(t-1)})$.
- 3: Compute an acceptance ratio (probability):

$$r = \frac{\pi(\theta^* \mid \mathbf{y}) / J_t(\theta^* \mid \theta^{(t-1)})}{\pi(\theta^{(t-1)} \mid \mathbf{y}) / J_t(\theta^{(t-1)} \mid \theta^*)}$$

- 4: Accept θ^* as $\theta^{(t)}$ with probability $\min(r, 1)$. If θ^* is not accepted, then $\theta^{(t)} = \theta^{(t-1)}$.
- 5: Repeat steps 2-4 *M* times to get *M* draws from $\pi(\theta | y)$, with optional burn-in and/or thinning.

Likelihood Computation - Example

Likelihood

$$\begin{array}{rcl} \mathcal{L} = & \mathcal{P}(x_{0}^{b}) & \times & \mathcal{P}(x_{0}^{d} \mid x_{0}^{b}) \times \\ & \mathcal{P}(x_{1}^{b} \mid x_{0}^{d}) & \times & \mathcal{P}(x_{1}^{d} \mid x_{1}^{b}) \times \\ & \delta_{\{x_{0}^{d} - x_{1}^{b}\}}(x_{2}^{b}) & \times & \mathcal{P}(x_{2}^{d} \mid x_{0}^{d} - x_{1}^{b}) \times \\ & \mathcal{P}(x_{3}^{b} \mid x_{1}^{d}) & \times \\ & \mathcal{P}(x_{3}^{b} \mid x_{1}^{d}) & \times \\ & \mathcal{P}(x_{5}^{b} \mid x_{2}^{d}) & \times \\ & \mathcal{P}(x_{5}^{b} \mid x_{2}^{d}) & \times \\ & \delta_{\{x_{2}^{d} - x_{5}^{b}\}}(x_{6}^{b}) \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Likelihood - General Form

$$\begin{split} \mathcal{L} &= P(x_{0}^{b}) \times \prod_{i=0}^{nb_{obs}-1} \mathbb{P}(x_{i}^{d} \mid x_{i}^{b}) \times \\ &\prod_{\delta_{i}=1} [\mathbb{P}(x_{2i+1}^{b} \mid x_{i}^{d}) \, \delta_{\{x_{i}^{d}-x_{2i+1}^{b}\}}(x_{2i+2}^{b})] \times \\ &\prod_{\delta_{i}=2} [\mathbb{P}(x_{2i+1}^{b} \mid x_{i}^{d}) \, \delta_{\{x_{i}^{d}-x_{2i+1}^{b}\}}(x_{2i+2}^{b})] \\ &= 1 \times \prod_{i=0}^{nb_{obs}-1} [\frac{1}{1-\Phi(0,\mu_{x},\sigma_{x})} \frac{1}{\sigma_{x} T_{i} \sqrt{2\pi}} \exp\{-\frac{[x_{i}^{d}-(x_{i}^{b}+\mu_{x} T_{i})]^{2}}{2\sigma_{x}^{2} T_{i}^{2}}\}] \times \\ &\prod_{\delta_{i}=1} [\frac{(x_{2i+1}^{b})^{\beta_{r}-1} (x_{i}^{d}-x_{2i+1}^{b})^{\beta_{a}-1}}{(x_{i}^{d})^{\beta_{r}+\beta_{a}-1} B(\beta_{r},\beta_{a})} \times \delta_{\{x_{i}^{d}-x_{2i+1}^{b}\}}(x_{2i+2}^{b})] \times \\ &\prod_{\delta_{i}=2} [\frac{(x_{2i+1}^{b})^{\beta_{a}-1} (x_{i}^{d}-x_{2i+1}^{b})^{\beta_{r}-1}}{(x_{i}^{d})^{\beta_{r}+\beta_{a}-1} B(\beta_{a},\beta_{r})} \times \delta_{\{x_{i}^{d}-x_{2i+1}^{b}\}}(x_{2i+2}^{b})] \end{split}$$

Full Conditional Distributions 1

$$f(\theta \mid x) \propto L \times e^{-\frac{(\mu_x - 1.25)^2}{2(1.1)^2}} (\frac{1}{\sigma_x^2})^4 e^{-\frac{0.02}{\sigma_x^2}} \beta_r e^{-10\beta_r} \beta_a e^{-10\beta_a} \frac{1}{2}$$

$$\pi(\mu_{X}|\cdot) \propto \left(\frac{1}{1-\Phi(0,\mu_{X},\sigma_{X})}\right)^{nb_{obs}}$$
$$\mathbb{TN}\left(\frac{\sigma_{1}^{2}\sum_{i=0}^{nb_{obs}-1}\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}+\sigma_{x}^{2}\mu_{1}}{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}};\left(\frac{\sigma_{X}\sigma_{1}}{\sqrt{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}}}\right)^{2}\right)\mathbb{1}_{\mu_{X}>0}$$

$$\begin{aligned} \pi(\sigma_x^2|\cdot) \propto & \left(\frac{1}{1-\Phi(0,\mu_x,\sigma_x)}\right)^{nb_{obs}} \\ & \mathbb{IG}\left(\frac{nb_{obs}}{2} + \alpha - 2; \frac{1}{2}\sum_{i=0}^{nb_{obs}-1} (\mu_x - \frac{x_i^d - x_i^b}{T_i})^2 + \beta \right) \mathbb{1}_{\sigma_x > 0} \end{aligned}$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Full Conditional Distributions 2

$$\pi(\beta_{r}|\cdot) \propto \prod_{\delta_{i}=1} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{r}} \right] \times \prod_{\delta_{i}=2} \left[\left(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{r}} \right] \times \left[\frac{1}{B(\beta_{r},\beta_{a})} \right]^{nb_{obs}} \times \beta_{r}^{\alpha-1} e^{-\beta\beta_{r}}$$

$$\pi(\beta_{a}|\cdot) \propto \prod_{\delta_{i}=1} \left[\left(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{a}} \right] \times \prod_{\delta_{i}=2} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{a}} \right] \times \left[\frac{1}{B(\beta_{r},\beta_{a})} \right]^{nb_{obs}} \times \beta_{a}^{\alpha-1} e^{-\beta\beta_{a}}$$

$$\pi(\delta_{i}|\cdot) \propto \left[\left(x_{2i+1}^{b}\right)^{\beta_{r}-1} \left(x_{i}^{d} - x_{2i+1}^{b}\right)^{\beta_{a}-1} \right]^{\delta_{i}=2} \left[\left(x_{2i+1}^{b}\right)^{\beta_{a}-1} \left(x_{i}^{d} - x_{2i+1}^{b}\right)^{\beta_{r}-1} \right]^{\delta_{i}=2}$$

SAC

æ

Algorithmic Specifications

- Sampling from conditionals of (μ_x, σ²_x, β_r, β_a) with a MH step.
- The candidate distributions used on the MH are Truncated Normals.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Algorithmic Specifications

- Sampling from conditionals of (μ_x, σ²_x, β_r, β_a) with a MH step.
- The candidate distributions used on the MH are Truncated Normals.
- The artificial dataset is the same as in the ABC application.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Presence of Asymmetry - Sampling Paths

Figura: Number of iterations: 10^6 , burn-in = 10^3 , thin = 100, candidate standard deviations = (0.1, 0.005, 0.1, 0.1), the standard deviations = (0.1, 0.005, 0.1, 0.1).

Absence of Asymmetry - Sampling Paths

Figura: Number of iterations: 10^4 , burn-in = 0, thin = 1, candidate standard deviations = (0.1, 0.1, 0.1, 0.1), $(\beta_r, \beta_a) = (15, 15)$.

Applied MCMC to Aging

Presence of Weak Asymmetry - Sampling Paths

Figura: Number of iterations: 10^4 , burn-in = 0, thin = 1, candidate standard deviations = (0.1, 0.1, 0.1, 0.1), $(\beta_r, \beta_a) = (2, 3)$.

Presence of Weak Asymmetry - Sampling Paths

Figura: Number of iterations: 10^4 , burn-in = 0, thin = 1, candidate standard deviations = (0.1, 0.1, 0.1, 0.1), $(\beta_r, \beta_a) = (3, 3)$.

Posterior - Prior Histograms

Figura: True values: $(\mu_x, \sigma_x^2) = (1, 0.1)$. Number of iterations: 10⁶.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Applied MCMC to Aging

Figura: Number of iterations: 10^4 , burn-in = 0, thin = 1, candidate standard deviations = (0.1, 0.1, 0.1, 0.1)

Applied MCMC to Aging

Applied MCMC to Aging

• $(\mu_x, \beta_r, \beta_a)$ do not converge to their true value.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Applied MCMC to Aging

- σ_x^2 does not converge.
- $(\mu_x, \beta_r, \beta_a)$ do not converge to their true value.
- Need for more complex sampling mechanisms.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Extensions

- Extensions

Aging Process:

- An ABC for the last model.
- Selection of explanatory variables.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Application to real datasets.

Likelihood

L

$$= \left(\frac{1}{1-\Phi(0,\mu_{x},\sigma_{x})}\right)^{nb_{obs}} \left(\frac{1}{\sigma_{x}\sqrt{2\pi}}\right)^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{T_{i}}\right] \times \\ \exp\left\{-\sum_{i=0}^{nb_{obs}-1} \frac{[x_{i}^{d}-(x_{i}^{b}+\mu_{x}T_{i})]^{2}}{2\sigma_{x}^{2}T_{i}^{2}}\right\} \times \\ \prod_{\delta_{i}=1} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{r}} \left(1-\frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{a}}\right] \times \prod_{\delta_{i}=2} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{a}} \left(1-\frac{x_{2i+1}^{b}}{x_{i}^{d}}\right)^{\beta_{r}}\right] \times \\ \left[\frac{1}{B(\beta_{r},\beta_{a})}\right]^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{(x_{i}^{d})^{2}}{x_{2i+1}^{b}(x_{i}^{d}-x_{2i+1}^{b})}\right]$$

Likelihood

$$L = \left(\frac{1}{1 - \Phi(0, \mu_X, \sigma_X)}\right)^{nb_{obs}} \left(\frac{1}{\sigma_X \sqrt{2\pi}}\right)^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{T_i}\right] \times$$

$$\exp{\{-\sum_{i=0}^{\textit{nb}_{obs}-1}\frac{[\mu_x-\frac{x_i^d-x_i^b}{T_i}]^2}{2\sigma_x^2}\}}\times$$

$$\prod_{\delta_{i}=1} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{r}} (1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}})^{\beta_{a}} \right] \times \prod_{\delta_{i}=2} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{a}} (1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}})^{\beta_{r}} \right] \times$$

$$\left[\frac{1}{B(\beta_{r},\beta_{a})}\right]^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{(x_{i}^{d})^{2}}{x_{2i+1}^{b}(x_{i}^{d}-x_{2i+1}^{b})}\right]$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

μ_x Full Conditional

$$\pi(\mu_{x}|\cdot) = \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{1-\Phi(0,\mu_{x},\sigma_{x})} \frac{1}{\sigma_{x}T_{i}\sqrt{2\pi}} \exp\left\{-\frac{[x_{i}^{d}-(x_{i}^{b}+\mu_{x}T_{i})]^{2}}{2\sigma_{x}^{2}T_{i}^{2}}\right\}\right] \times \frac{1}{1-\Phi(0,\mu_{1},\sigma_{1})} \frac{1}{\sigma_{1}\sqrt{2\pi}} \exp\left[-\frac{(\mu_{x}-\mu_{1})^{2}}{2\sigma_{1}^{2}}\right]$$

$$\propto \left(\frac{1}{1-\Phi(0,\mu_{x},\sigma_{x})}\right)^{nb_{obs}} \left(\frac{1}{\sigma_{x}\sqrt{2\pi}}\right)^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{T_{i}}\right] \times \exp\left\{-\sum_{i=0}^{nb_{obs}-1} \frac{[x_{i}^{d}-(x_{i}^{b}+\mu_{x}T_{i})]^{2}}{2\sigma_{x}^{2}T_{i}^{2}}\right\} \exp\left[-\frac{(\mu_{x}-\mu_{1})^{2}}{2\sigma_{1}^{2}}\right]$$

$$\propto \left(\frac{1}{1-\Phi(0,\mu_{x},\sigma_{x})}\right)^{nb_{obs}} \left(\frac{1}{\sigma_{x}\sqrt{2\pi}}\right)^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{T_{i}}\right] \times \exp\left\{-\sum_{i=0}^{nb_{obs}-1} \frac{[\mu_{x}-\frac{x_{i}^{d}-x_{i}^{b}}{2\sigma_{x}^{2}}\right]^{2}}{2\sigma_{x}^{2}}\right\} \exp\left[-\frac{(\mu_{x}-\mu_{1})^{2}}{2\sigma_{1}^{2}}\right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

μ_x Full Conditional

$$\begin{aligned} \pi(\mu_{X}|\cdot) \propto & \left(\frac{1}{1-\Phi(0,\mu_{X},\sigma_{X})}\right)^{nb_{obs}} \left(\frac{1}{\sigma_{X}\sqrt{2\pi}}\right)^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{T_{i}}\right] \times \\ & \exp\left\{-\frac{1}{2\sigma_{x}^{2}} \left[nb_{obs}\mu_{X}^{2} - 2\mu_{X}\sum_{i=0}^{nb_{obs}-1}\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}} + \right. \\ & \left.\sum_{i=0}^{nb_{obs}-1} \left(\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}\right)^{2}\right]\right\} \times \\ & \exp\left[-\frac{1}{2\sigma_{1}^{2}} \left(\mu_{X}^{2} - 2\mu_{X}\mu_{1} + \mu_{1}^{2}\right)\right] \end{aligned}$$

$$\propto \left(\frac{1}{1-\Phi(0,\mu_{X},\sigma_{X})}\right)^{nb_{obs}}\left(\frac{1}{\sigma_{X}\sqrt{2\pi}}\right)^{nb_{obs}}\prod_{i=0}^{nb_{obs}-1}\left[\frac{1}{T_{i}}\right] \times \\ \exp\left\{-\frac{1}{2\sigma_{X}^{2}\sigma_{1}^{2}}\left[\left(\sigma_{1}^{2}nb_{obs}+\sigma_{X}^{2}\right)\mu_{X}^{2}-\right. \\ \left.2\left(\sigma_{1}^{2}\sum_{i=0}^{nb_{obs}-1}\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}+\sigma_{X}^{2}\mu_{1}\right)\mu_{X}\right\}\right] \times \\ \exp\left\{-\frac{1}{2\sigma_{X}^{2}\sigma_{1}^{2}}\left[\sigma_{1}^{2}\sum_{i=0}^{nb_{obs}-1}\left(\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}\right)^{2}+\sigma_{X}^{2}\mu_{1}^{2}\right]\right\} \right\}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

.
μ_{x} Full Conditional

$$\begin{aligned} \pi(\mu_{x}|\cdot) \propto & \left(\frac{1}{1-\Phi(0,\mu_{x},\sigma_{x})}\right)^{nb_{obs}} \left(\frac{1}{\sigma_{x}\sqrt{2\pi}}\right)^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{T_{i}}\right] \times \\ & \exp\left\{-\frac{1}{2\left(\frac{1}{\sqrt{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}}}\right)^{2}}\left[\left(\mu_{x}-\frac{\sigma_{1}^{2}\sum_{i=0}^{nb_{obs}-1}\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}+\sigma_{x}^{2}\mu_{1}}{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}}\right)^{2}\right]\right\} \times \\ & \exp\left\{-\frac{1}{2\left(\frac{\sigma_{x}\sigma_{1}}{\sqrt{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}}}\right)^{2}}\left[\frac{\sigma_{1}^{2}\sum_{i=0}^{nb_{obs}-1}\left(\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}\right)^{2}+\sigma_{x}^{2}\mu_{1}^{2}}{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}}-\left(\frac{\sigma_{1}^{2}\sum_{i=0}^{nb_{obs}-1}\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}+\sigma_{x}^{2}\mu_{1}}{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}}\right)^{2}\right]\right\} \\ \propto & \left(\frac{1}{1-\Phi(0,\mu_{x},\sigma_{x})}\right)^{nb_{obs}} \\ & \mathbb{TN}\left(\frac{\sigma_{1}^{2}\sum_{i=0}^{nb_{obs}-1}\frac{x_{i}^{d}-x_{i}^{b}}{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}};\left(\frac{\sigma_{x}\sigma_{1}}{\sqrt{\sigma_{1}^{2}nb_{obs}+\sigma_{x}^{2}}}\right)^{2}\right)\mathbb{1}\mu_{x} > 0 \end{aligned}$$

σ_x^2 Full Conditional

$$\pi(\sigma_{X}^{2}|\cdot) = \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{1-\Phi(0,\mu_{X},\sigma_{X})} \frac{1}{\sigma_{X}T_{i}\sqrt{2\pi}} \exp\left\{-\frac{[x_{i}^{d}-(x_{i}^{b}+\mu_{X}T_{i})]^{2}}{2\sigma_{X}^{2}T_{i}^{2}}\right\}\right] \times \frac{\beta^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{\sigma_{X}^{2}}\right)^{\alpha-1} \exp\left[-\frac{\beta}{\sigma_{X}^{2}}\right]$$

$$\propto \left(\frac{1}{1-\Phi(0,\mu_{X},\sigma_{X})}\right)^{nb_{obs}} \left(\frac{1}{\sigma_{X}\sqrt{2\pi}}\right)^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{1}{T_{i}}\right] \times \exp\left\{-\sum_{i=0}^{nb_{obs}-1} \frac{[\mu_{X}-\frac{x_{i}^{d}-x_{i}^{b}}{T_{i}}]^{2}}{2\sigma_{X}^{2}}\right\} \left(\frac{1}{\sigma_{X}^{2}}\right)^{\alpha-1} \exp\left[-\frac{\beta}{\sigma_{X}^{2}}\right]$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

σ_x^2 Full Conditional

$$\pi(\sigma_X^2|\cdot) \propto (\frac{1}{1-\Phi(0,\mu_X,\sigma_X)})^{nb_{obs}}(\frac{1}{\sigma_X^2})^{(\frac{nb_{obs}}{2}+\alpha-2)+1} \times$$

$$\exp\left\{-\frac{1}{\sigma_x^2}\left[\frac{1}{2}\sum_{i=0}^{nb_{obs}-1}(\mu_x - \frac{x_i^d - x_i^b}{T_i})^2 + \beta\right]\right\}$$

$$\propto \quad \left(\frac{1}{1-\Phi(0,\mu_x,\sigma_x)}\right)^{nb_{obs}} \\ \mathbb{IG}\left(\frac{nb_{obs}}{2}+\alpha-2\,;\,\frac{1}{2}\sum_{i=0}^{nb_{obs}-1}(\mu_x-\frac{x_i^d-x_i^b}{T_i})^2+\beta\,\right)\mathbb{1}_{\sigma_x>0}$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

β_r Full Conditional

$$\pi(\beta_{r}|\cdot) = \prod_{\delta_{i}=1} \left[\frac{(x_{2i+1}^{b})^{\beta_{r}-1}(x_{i}^{d}-x_{2i+1}^{b})^{\beta_{a}-1}}{(x_{i}^{d})^{\beta_{r}+\beta_{a}-1}B(\beta_{r},\beta_{a})} \right] \times \prod_{\delta_{i}=2} \left[\frac{(x_{2i+1}^{b})^{\beta_{a}-1}(x_{i}^{d}-x_{2i+1}^{b})^{\beta_{r}-1}}{(x_{i}^{d})^{\beta_{r}+\beta_{a}-1}B(\beta_{a},\beta_{r})} \right] \times \beta_{r}^{\alpha-1} e^{-\beta_{r}}$$

$$\propto \prod_{\delta_{i}=1} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{r}} \left(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{a}} \right] \times \\ \prod_{\delta_{i}=2} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{a}} \left(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{r}} \right] \times \\ \left[\frac{1}{B(\beta_{r},\beta_{a})} \right]^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{(x_{i}^{d})^{2}}{x_{2i+1}^{b}(x_{i}^{d}-x_{2i+1}^{b})} \right] \times \beta_{r}^{\alpha-1} e^{-\beta\beta_{r}}$$

$$\propto \prod_{\delta_{i}=1} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{r}} \right] \times \prod_{\delta_{i}=2} \left[\left(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{r}} \right] \times \left[\frac{1}{B(\beta_{r},\beta_{a})} \right]^{nb_{obs}} \times \beta_{r}^{\alpha-1} e^{-\beta\beta_{r}}$$

β_a Full Conditional

$$\pi(\beta_{a}|\cdot) = \prod_{\delta_{i}=1} \left[\frac{(x_{2i+1}^{b})^{\beta_{r-1}}(x_{i}^{d}-x_{2i+1}^{b})^{\beta_{a}-1}}{(x_{i}^{d})^{\beta_{r}+\beta_{a}-1}B(\beta_{r},\beta_{a})} \right] \times \prod_{\delta_{i}=2} \left[\frac{(x_{2i+1}^{b})^{\beta_{a}-1}(x_{i}^{d}-x_{2i+1}^{b})^{\beta_{r-1}}}{(x_{i}^{d})^{\beta_{r}+\beta_{a}-1}B(\beta_{a},\beta_{r})} \right] \times \beta_{a}^{\alpha-1}e^{-\beta_{\beta_{a}}}$$

$$\propto \prod_{\delta_{i}=1} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{r}} \left(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{a}} \right] \times \\ \prod_{\delta_{i}=2} \left[\left(\frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{a}} \left(1 - \frac{x_{2i+1}^{b}}{x_{i}^{d}} \right)^{\beta_{r}} \right] \times \\ \left[\frac{1}{B(\beta_{r},\beta_{a})} \right]^{nb_{obs}} \prod_{i=0}^{nb_{obs}-1} \left[\frac{(x_{i}^{d})^{2}}{x_{2i+1}^{b}(x_{i}^{d}-x_{2i+1}^{b})} \right] \times \beta_{a}^{\alpha-1} e^{-\beta\beta_{a}}$$

$$\propto \prod_{\delta_i=1} \left[\left(1 - \frac{x_{2i+1}^b}{x_i^d}\right)^{\beta_a} \right] \times \prod_{\delta_i=2} \left[\left(\frac{x_{2i+1}^b}{x_i^d}\right)^{\beta_a} \right] \times \left[\frac{1}{B(\beta_r,\beta_a)} \right]^{nb_{obs}} \times \beta_a^{\alpha-1} e^{-\beta\beta_a}$$