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Context in ecology
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Data collection

Soil samples were collected from a range of sites across a fuel contamination gradient at Aus-
tralias Casey Station in East Antarctica (110°32' E, 66° 17’ S). The data comprise counts of
a large number (of the order of 1 800) of microbial taxa, referred to as OTUs (operational
taxonomic units; see Schloss et al., 2009), collected at 60 sites, across a range of hydrocarbon
contamination (Siciliano et al., 2014). Genomic DNA extracted from samples was sequenced
on a 454 Titanium FLX+ instrument (Roche, Brandford, CT, USA) at the Research and Test-
ing facility (Lubbock, TX, USA) using the universal bacterial primers 28F and 519R (Dowd
et al., 2008). Pyrosequencing data were processed using the mothur software package (Schloss
et al., 2009). This involved removal of short reads (<150bp), excessive homoploymeric reads
(>8bp repeats) and denoising with AmpliconNoise (min/max flows 360/720) (Quince et al.,
2011). Preclustering at 1% was performed to negate the per base error rate of the 454 plat-
forms. Seed sequences were then aligned to the SILVA 16S rRNA gene database alignment
using a NAST alignment algorithm (Pruesse et al., 2007; Caporaso et al., 2010). Reads were
then chimaera-checked (Edgar et al., 2011) and clustered into OTUs at 96% sequence sim-
ilarity to achieve approximately species-level units as derived by Kim et al. (2011). Seed
sequences from each OTU were then classified using a Naive Bayesian classifier in mothur
against the Greengenes 16S reference database (October 2012 version, see McDonald et al.,
2012).
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Shannon index Simpson index
Hshan(P) = — > pjlogpj  Hsimp(p) =1 — 2 P}

Good index

HGood,a,,B(p) = Z pja IOgB Pj
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Diversity indices of microbial data
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Model the distribution of microbes in the soil:
The nth observation at site i is species j with probability p;(X;)
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Model

Model the distribution of microbes in the soil:
The nth observation at site i is species j with probability p;(X;)

For every site i

o0
Yai | P(X), Xi =D pi(Xi)6;
j=1
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Model

Model the distribution of microbes in the soil:
The nth observation at site i is species j with probability p;(X;)

For every site i

o0
Yai | P(X), Xi =D pi(Xi)6;
j=1

Parameters: p = (p(X1),...,p(Xi)) = (pj(X,-))l.u.

J. Arbel et al Dependent model for species data



Dependent model

Model

Model the distribution of microbes in the soil:
The nth observation at site i is species j with probability p;(X;)

For every site i

o0
Yai | P(X), Xi =D pi(Xi)6;
j=1

Parameters: p = (p(X1),...,p(Xi)) = (pj(Xi))iJ

@ Holmes et al. (2012): Dirichlet Multinomial Mixtures: Generative
Models for Microbial Metagenomics (PloS one)
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Dependent model

Model

Model the distribution of microbes in the soil:
The nth observation at site i is species j with probability p;(X;)

For every site i

o0
Yai | P(X), Xi =D pi(Xi)6;
j=1

Parameters: p = (p(X1),...,p(Xi)) = (pj(Xi))iJ

@ Holmes et al. (2012): Dirichlet Multinomial Mixtures: Generative
Models for Microbial Metagenomics (PloS one)

o Lijoi et al. (2007): Bayesian nonparametric estimation of the
probability of discovering new species (Biometrika)
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Randomizing the weights p;(X;)

@ Use the distribution of the weights in a
Dirichlet process, obtained by a
stick-breaking construction
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Randomizing the weights p;(X;)
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Randomizing the weights p;(X;)
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Randomizing the weights p;(X;)

Site 9

0.35 -
0.30 -

0.25 -

0.20 -

- . . . 0.15 A

@ Use the distribution of the weights in a 0.10 4

Dirichlet process, obtained by a 0.05

stick-breaking construction pood
0 5 10 15 20 25 30

Stick-breaking construction

p=Vi, p=V][[1-W), M=6

I<j 0.35

iid 0.30 -

with V; ~ Beta(1, M). 0.25
020 °
It is denoted p ~ GEM(M). gﬁﬁ .
0.05 1 ® o,

0.00 2 0 0%00%0 00000000000
T

T —
0 5 10 15 20 25 30

J. Arbel et al Dependent model for species data



Data and diversity Dependent model Applications References

On convergen




Data and diversity Dependent model Applications References

On convergence

Need control in probability tail sums

o0
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On convergence rates

(Need control in probability tail sums
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On convergence rates
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Construction of the prior _

o With the strick-breaking relation, a Dep — GEM prior is obtained
from a Beta process.
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Construction of the prior

@ With the strick-breaking relation, a Dep — GEM prior is obtained
from a Beta process.

@ Such a dependent Beta process is obtained by a transformed
Gaussian process (Rasmussen and Williams, 2006)
— Denote by Z ~ N(0,0?) a Gaussian random variable, by &, its
CDF and by Fp a Beta(1, M) CDF. Then:

®,,(Z) ~ Unif(0,1) and V = F,,' 0 &,,(Z) ~ Beta(1, M),
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Construction of the prior

@ With the strick-breaking relation, a Dep — GEM prior is obtained
from a Beta process.

@ Such a dependent Beta process is obtained by a transformed
Gaussian process (Rasmussen and Williams, 2006)
— Denote by Z ~ N(0,0?) a Gaussian random variable, by &, its
CDF and by Fp a Beta(1, M) CDF. Then:

®,,(Z) ~ Unif(0,1) and V = F,,' 0 &,,(Z) ~ Beta(1, M),

@ Dependence specified by covariance function

K(Xi, X)) = Cov(2(X), Z(X))).

Covariance function R,\(Xl7 Xz)
Squared Exponential (SE) exp ( — (X1 — X2)?/(2A?))
Ornstein-Uhlenbeck (OU) exp (— | X1 — X2|/Q)
Rational Quadratic (RQ) (14 (X1 — X2)2/(2)2))
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Graphical model representation for the Dep — GEM model

Covariates | X, X, . X, . X
Dep_GEM7 Z @ @ | @ | @
Observations | Y1 Y5> e . YN
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Algorithm: Metropolis within Gibbs

Algorithm 1 Dep — GEM algorithm (Gibbs)

: Update Z given (0z, A\, M)
: Update oz given (Z, A\, M)
. Update A given (Z,0z, M)
: Update M given (Z,0z,\)

B W N =
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Algorithm: Metropolis within Gibbs

Algorithm 3 Dep — GEM algorithm (Gibbs)

: Update Z given (0z, A\, M)
: Update oz given (Z, A\, M)
. Update A given (Z,0z, M)
: Update M given (Z,0z,\)

B W N =

Algorithm 4 MH algorithm

1: Given 0, propose 8’ ~ Qg(- | 0)

Po(0') Qo(6]6’
2: Compute pg = PZ((G)) Qe"((el‘w))

3: Accept @' wp min(pg,1), otherwise keep 6
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Predictive distribution

o Predictive distribution of Z, obtained by integrating out Z in the
conditional distribution according to the posterior distribution
m(Z]Y, X):

m(Z. | X.,Y) = /w(z* | X., X, Z)7(Z|Y, X)dZ.

o No particular computational burden:

Algorithm 5 Predictive distribution simulation

1: Sample Z from the posterior distribution 7(Z|Y, X)
2. Given Z, sample Z, from the conditional distribution

m(Z. | X,, X, Z)

J. Arbel et al Dependent model for species data
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Comparison of the Dep — GEM and indep. GEM models
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Comparison of the Dep — GEM and indep. GEM models

Shannon diversity
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Effective concentration estimation EC,

Bray—Curtis dissimilarity
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Effective concentration estimation EC,
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Future work

@ Extension to multiple covariates
— by using Gaussian random fields instead of Gaussian processes

— model choice
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Future work

@ Extension to multiple covariates
— by using Gaussian random fields instead of Gaussian processes

— model choice

@ Use of finer stick-breaking distributions

— e.g. Beta(a, b) or Gibbs-type priors instead of Beta(1, M)

J. Arbel et al Dependent model for species data



References

Thank you for your attention!

Arbel, J., Mengersen, K., Raymond, B., and King, C. (2013a). Ecotoxicological
data study of diversity using a dependent Bayesian nonparametric model.
Manuscript under preparation.

Arbel, J., Mengersen, K., and Rousseau, J. (2013b). Bayesian nonparametric
dependent models for the study of diversity in species data. Manuscript
under preparation.

Holmes, I., Harris, K., and Quince, C. (2012). Dirichlet Multinomial Mixtures:
Generative Models for Microbial Metagenomics. PloS one, 7(2):e30126.

Lijoi, A., Mena, R. H., and Priinster, |. (2007). Bayesian nonparametric
estimation of the probability of discovering new species. Biometrika,
94(4):769-786.

Lijoi, A., Priinster, I., and Walker, S. G. (2008). Bayesian nonparametric
estimators derived from conditional Gibbs structures. The Annals of Applied
Probability, 18(4):1519-1547.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for
Machine Learning. MIT Press.

J. Arbel et al Dependent model for species data



	Ecological data and diversity
	Dependent model for species data and diversity
	Applications



