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Introduction

Consider the usual Gaussian regression setting

Yi = f (i/n) + σεi

where εi
iid∼ N (0, 1). We want to test whether f satisfy some shape

constraints (such as monotonicity).

• Drug response models

• Temperatures anomalies problems

• Economic models when assessing a global trend
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Let F be the set of uniformly bounded monotone non increasing

functions. We want to test

H0 : f ∈ F , versus H1 : f 6∈ F

This problem has already been address in the frequentist literature

• Baraud et al. (2005) use projection of the regression function on the
set of piecewise constant functions,

• Hall and Heckman (2000) and Ghosal et al. (2000) test negativity of
the derivative of the regression function,

• Akakpo et al. (2012) propose a procedure that detect departure
from monotonicity via local least concave majorant.
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Remarks

• These methods require in general heavy computations to be used in
practice,

• There is only one other (to my knowledge) Bayesian procedure to
test for monotonicity.

We thus want to construct a Bayesian testing procedure...

• ... that is easy to implement/use in practice

• ... that is consistent

• ... that achieve the optimal separation rate
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Prior construction

We consider the following prior

Π :


k ∼ πk
σ ∼ πσ
ω1 . . . ωk |k ∼ ⊗n

i=1πω

and f is de�ned by

fω,k(·) =
k∑

i=1

ωi I[(i−1)/k,i/k)(·)

We thus have a posterior distribution for f

Π(f , σ|Y) ∝ Π(f , σ)L(Y, f , σ)
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We consider the following prior

Π :


k ∼ πk
σ ∼ πσ
ω1 . . . ωk |k ∼ ⊗n

i=1πω

and f is de�ned by

fω,k(·) =
k∑

i=1

ωi I[(i−1)/k,i/k)(·)

We thus have a posterior distribution for f

Π(f , σ|Y) ∝ Π(f , σ)
n∏

i=1

σ−1φ

(
Yi − f (i/n)

σ

)
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Bayes Factor

The standard Bayesian approach will be to compute the Bayes Factor We
thus consider the Bayes Factor

B0,1 =
Π(f ∈ F|Y)�Π(F)

Π(f 6∈ F|Y)�1− Π(F)

Drawbacks

• The computation of Π(F) is di�cult and require some strong
conditions on the prior

• This approach does not give satisfactory results

• We could not prove consistency for this method
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Alternative approach

We thus consider an alternative test

Ha
0 : δ(f ,F) ≤ τ versus Ha

1 : δ(f ,F) > τ

where δ(f ,F) is a discrepancy measure between f and F and τ a
threshold.
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Alternative approach

We thus consider an alternative test

Ha
0 : δ(f ,F) ≤ τ versus Ha

1 : δ(f ,F) > τ

where δ(f ,F) is a discrepancy measure between f and F and τ a
threshold. We consider the standard 0− 1 loss and thus de�ne our test as

δπn (τ) :=

{
0 if Π (δ(f ,F) ≤ τ |Y) ≥ γ0

γ0+γ1

1 otherwise
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We want both test to be asymptotically equivalent

• We thus set τ = τn −→
n→∞

0

• For some distance d and for all ρ > 0

sup
f∈F

En
f (δπn (τn)) = o(1)

sup
f ,d(f ,F)>ρ

En
f (1− δπn (τn)) = o(1).

• We will ask that the minimum value ρ = ρn such that the test is
consistent is close to the minimax separation rate.
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Construction of the test

Recall

fω,k(·) =
k∑

i=1

ωi I[ i−1
k
, i
k
[(·)

We consider for δ(fω,k ,F) the supremum norm between fω,k and F ,
more precisely, we take

δ(fω,k ,F) = H(ω, k) = max
1≤i<j≤k

(ωj − ωi )

We now need a good calibration of τn such that our procedure is
consistent and achieve the optimal separation rate. We consider
Hölderian alternatives with α ≤ 1

f ∈ H(α, L) =
{
f , [0, 1]→ R,∀x , y ∈ [0, 1]2|f (y)− f (x)| ≤ L|y − x |α

}
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Conditions

Consider the model Yi = f (i/n) + σεi where εi ∼ N (0, 1). We take Π of
the form

dΠ(fω,k , σ) = πk(k)πσ(σ)
k∏

i=1

πω(ωi )

We get these two conditions

C1 The densities πω and πσ are continuous, πω(x) > 0 for all
x ∈ R and πσ(t) > 0 for all t ∈ R+

∗ ,

C2 πk is such that there exist positive constants Cd and Cu

such that

e−Cd kL(k) ≤ πk(k) ≤ e−CukL(k)

where L(k) is either log(k) or 1.
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Main Theorem

Theorem

Under the assumptions C1 and C2, setting τkn = M0

√
k log(n)/n and δπn

the testing procedure

δπn = I
{
π
(
H(ω, k) > τkn |Y n

)
>

γ0
γ1 + γ0

}
thus

sup
f∈F

En
f (δπn ) = o(1)

sup
f ,d(f ,F)>ρ,f∈H(α,L)

En
f (1− δπn ) = o(1)

(1)

for all ρ > ρn(α) = M(n/ log(n))−α/(2α+1)vn where vn = 1 when

L(k) = log(k) and vn =
√
log(n) when L(k) = 1.
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Main Theorem

Remarks

• The conditions on the prior are mild and satis�ed for a wide variety
of distributions

• Neither the prior nor the hyperparameters depend on the regularity
under the alternative,

• the separation rate ρn(α) is the minimax separation rate (up to a
log(n) factor)
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Simple choice for the prior

We choose

• k ∼ Geom(λ)

• σ|k ∼ Γ−1(a, b)

• ωi |k, σ2∼N (m, σ2/µ)

We also need to calibrate the hyperparameters λ, a, b,m and µ, and the
constant M0 in τkn .
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Simulated data

We run our test for nine functions adapted from the frequentist literature
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Simulated data

Table : Percentage of rejection for the simulated examples

f0 σ2 Barraud et

al. n = 100

Akakpo et

al. n = 100

Bayes Test, n :
100 250 500 1000

H0

f1 0.01 99 99 97 100 100 100

f2 0.01 99 100 95 100 100 100

f3 0.01 99 98 100 100 100 100

f4 0.01 100 99 100 100 100 100

f5 0.004 99 99 100 100 100 100

f6 0.006 98 99 100 100 100 100

f7 0.01 76 68 97 100 100 100

H1

f8 0.01 - - 2 0 0 0

f9 0.01 - - 2 3 2 2
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Temperature annomalies
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Figure : Temperature Anomalies

We compute Π̂(H(ω, k) > τkn |Y) = 0.98 , and thus reject monotonicity
of the cuve.
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"It is capital mistake to theorize before one has data."

-Sherlock Holmes, A Scandal in Bohemia

We proposed a test for monotonicity in a case where the standard

Bayesain approach fails Our procedure is

• easy to implement,

• gives good results in practice,

• has good asymptotic properties.

extentions

• extend to other types of shape constrains

• study how our procedure behaves for non Gaussian errors
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Thank You !

Go Bayes !
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