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Introduction : Inverse problems
Framework

Ill-posedness

Framework of inverse problems in statistics

e fcH=L%,pu.
@ K is a linear operator from H to H.

@ W is a Gaussian white noise on H

Example :
@ Deconvolution on T? : for k, f € IL?(T?),

Kf(x) =k = f(x) :J' k(x —t)f(t)dt.
'H‘Q



Introduction : Inverse problems
Framework

IIl-posedness

The Gaussian white noise (GWN) model

We observe
Y, =Kf+e¢W

where W is a Gaussian white noise (GWN) on H.

Observable quantities :

For u € H,

<YE) u> = <Kf) u> + €&, where &, ~ N (0, HUH]?-H)

and, for u, v € H,
COV(EU, EV) = (u, v)g.




Introduction : Inverse problems

Framework
lll-posedness

The problem with inverse problems : Hadamard's
conditions of well-posedness

o If K is bijective and K™ is continuous, the problem is well-posed.
@ If K is compact, the last assumption fails. The problem is ill-posed.

Solve Pp, approximating P. The smaller h, the more ill-posed P,
= There is a balance between accuracy and well-posedness.



Introduction : Inverse problems )
Fram

lll-posedness

@ Periodic deconvolution

© Spherical deconvolution

o
N
N



Periodic deconvolution

Problem and discretization

Recover f € 1L.?(T) from

Y. =kxf+eW,
where k € L2(T) and W is a GWN on L?(T).

Projection on harmonic functions

Let up: t — et g e 7.
Then

<Kf, Ue> = <k, u€><f, Ue> = kefe
= Yoo =kefog + W,
where W, are i.i.d N(0,1).
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Known kernel

Periodic deconvolution
Unknown kern

Matricial representation

Signal : Y, =kxf+ W

Ya‘l kl fl Wl
ngg k2 f2 W2
. = . . +¢€ .
Ye ke fe W,

W,

W,

~N(0, 1,




Known kernel

Periodic deconvolution
Unknown kernel

Algorithm

Reconstruction formula :

fo=k,'[k=f],
Define the thresholding level :

Sig, = ter/|logel.

£ —1
fo=ki'Yeolgy, osi,)y (<L

Then



Periodic deconvolution

Convergence results

@ Let the Sobolev ball with radius M be

WH(M) = {f € L2(S?), > (*|f[> < M?}.
>0

@ Let the set of kernels with DIP v be defined as
Kv(Q) = {k e L(T), |k, '| < Q'}

Let L ~¢ L,

sup E|f —f|| < C(ey/Tlogel) 777 .

fEWS (M)
KeKv (Q)

Those rates are minimax optimal up to logarithmic factors.




Known kernel
Unknown kernel

Periodic deconvolution

Semi-blind deconvolution framework

The convoluting kernel k is itself subject to experimental incertitude.

Modelization
We have access to ks = k + 6B, where B is a GWN on L?(T).

Goal
Recover f from

Y, = kxf+cW
ks = k-+06B ’

while controlling the error due to eW and 0B.

Projection on harmonic functions

Yeo = kefg+eW,
ks,e = ke¢+ 0By

where W, and By are i.i.d. are A/(0,1).

10/22



Known kernel

Periodic deconvolution
Unknown kernel

Matricial representation

Signal : Y =k xf 4+ eW

Ye1 k1 f1 Wi Wi
ngg k2 f2 W2 W2

. - . . + € . y ~ N(O) lf)
Y ke fe W, W,

Kernel : ks = k + 6B

ks,1 k1 B: B:
ks, k2 B> B:

. = . + ) i y . ~ N(O, |z)
ks, ke By B,
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Known kernel

Periodic deconvolution
Unknown kernel

Final Algorithm

Reconstruction formula :
f= Z k[l(k *f)EUe .
>0

For ¢ < L, define the thresholded versions

M : Ys,(’, = YE,E]‘{‘YEV(‘>TE\/@} ’

~—1
Kernel : k; , = k; 11 )
e ot &t {\k5,c\71<('<5\/ ‘ Iogé\)7 } )

and B L
fz - ké,EYﬁyz .
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Periodic deconvolution

Rates of convergence

Theorem (Delattre, Hoffmann, Picard, and V. (2012))
Let L~8"Y v Ne2

sup I —Fllizr) S (6v/1Togd])™" ¥V (ey/Tlogel) T

fews (M)
ke (Q)

Furthermore, the estimator is minimax optimal.

FIGURE : Estimation of the rate exponent
when ¢ < 0. Bottom-to-top :
s/v =4.5,1.1,0.9,0.7,0.6.




Spherical deconvolution

Introduction

Problem introduced and solved by Healy, Hendriks, and Kim (1998) and
Kim and Koo (2002) (non adaptive).

Applications in astrophysics, brain shape modelling.
Oz

For f € L2(S?) and " € L2(SO(3)), let

Kf(w) :J T(r)f(rtw)dr

: A
reso(3) Oy
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Framework
The adapted algorithm
Spherical deconvolution Exan imulation

Example

f l—‘smooth * f l—‘very smooth * f

FIGURE : 'View from above’ of f (left) and of T « f for different kernels T.
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Spherical deconvolution

Spherical harmonics

Definition

Zo,m($,0) = (—=1)"
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(a) Zgﬁs. (b) Zg,4.

16 /22



Spherical deconvolution

Blockwise SVD

Proposition

Let H¢ = span{Zy m, — < m < {}. Then dimH, =2¢ + 1 and we have
K(H) C H,

i.e. K admits a blockwise-SVD with respect to the spaces Hj.

H
Note f; the vector -
fo = ((f, szm>)7€§m§e

and Ty the matrix

e = {(r w Zo.my zm}

—<myn<t

Then
K—fz) = ref—/;
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Spherical deconvolution

The noisy model

Suppose now that we observe

Y, =T*xf+eW
I's =I+06B
where W is a GWN on LL?(S?) and B is a GWN on L2(SO(3)).
Projecting onto each subspace Hy, leads to the 'blockwise’ sequential
model :
o - =
Ve >0 { Yeo = Tefe + eWy
- I'se =T¢+ 8By

—
where W, € R?“"1 and By € Mop,1(R) are constituted of independent
Gaussian random variables.



Spherical deconvolution

Matricial representation

- —

Yg‘l l“1 fl V\_’1>
= : + € :

— -

Yg’@ r@ f@ VTR)

Kernel : T's =T + 6B

s, |=| Te |+ 9 By
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Spherical deconvolution

The adapted algorithm

Reconstruction formula :

f, = I KT,

Define the two thresholded levels :

Opg = kV20+18/|logd| and  Sig, = Tv2( + 1ey/|log €| .
Then
<L,

= —
fo=T3 Y 01, a1
t 8,6 V&L r ot |, <0py 1} {HYMH>SigC}’
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d algorithm
Spherical deconvolution xa simulation

Convergence results

@ Let the Sobolev ball with radius M be
WA (M) = {f e L2(8%), 3 ¢*|[Fe|P> < M}
>0
@ Let the set of kernels with DIP v be defined as
Kn(Q1, @) = {T € L2(SO(3)), [T¢ Y lop < @10 and [[Fellop < Qo)

Theorem (Delattre, Hoffmann, Picard, and V. (2012))

Let L~e P N82

- 2s 2s
sup  E|f —flrzse) < C(S\/I Iogé\)m“ AV (5\/| log E|) 2etaviz
fews (m)
KEK~ (Q1,Q2)

Those rates are minimax optimal up to logarithmic factors.
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Frame

The adapted algorithm
Spherical deconvolution Example of simulation
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The 1 algorithm

Spherical deconvolution Example of simulation
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