Propagation du chaos pour un modèle de Keller-Segel sous-critique

David Godinho Pereira (en collaboration avec Cristobal Quininao)

Laboratoire d'Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Université Paris-Est, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France

Plan

1 Le modèle

2 Résultats d'existence et d'unicité

3 Propagation du chaos

Plan

1 Le modèle

Propagation du chaos

L'équation de Keller-Segel est la suivante : pour $t \geq 0$ et $x \in \mathbb{R}^2$

$$\frac{\partial f_t(x)}{\partial t} = \chi \nabla_x \cdot ((K * f_t)(x)) f_t(x) + \triangle_x f_t(x), \tag{KS}$$

- $K(x) := \frac{x}{|x|^{\alpha+1}}$ avec $\alpha \in (0,1)$ est le noyau de champ de force.
- $\alpha = 1$ pour le cas standard.
- Modèle de chimiotaxie : étude du mouvement de cellules (bactéries ou amibes) qui sont attirées par une substance chimique qu'elles produisent.

• Stevens (2000) → convergence d'un système de particules en considérant un noyau régulier.

- Stevens (2000) → convergence d'un système de particules en considérant un noyau régulier.

Propagation du chaos de

$$\begin{split} X_t^{i,N} = X_0^{i,N} - \frac{\chi}{N} \sum_{j=1, j \neq i}^N \int_0^t K(X_s^{i,N} - X_s^{j,N}) ds + \sqrt{2} B_t^i, \\ \text{(syst. part.)} \end{split}$$

 $\forall i = 1, ..., N$, où $(B^i)_{i=1,...,N}$ famille de mouvements Brownien i.i.d. dans \mathbb{R}^2 .

• Propagation du chaos de

$$\begin{split} X_t^{i,N} = X_0^{i,N} - \frac{\chi}{N} \sum_{j=1, j \neq i}^N \int_0^t K(X_s^{i,N} - X_s^{j,N}) ds + \sqrt{2} B_t^i, \\ \text{(syst. part.)} \end{split}$$

 $\forall i = 1, ..., N$, où $(B^i)_{i=1,...,N}$ famille de mouvements Brownien i.i.d. dans \mathbb{R}^2 .

vers

$$X_t=X_0-\chi\int_0^t\int_{\mathbb{R}^2}K(X_s-x)f_s(dx)ds+\sqrt{2}B_t,$$
 (eds) où $f_t=\mathcal{L}(X_t).$

• $(\mathcal{L}(X_t))_{t\geq 0}$ est solution de (KS).

Quelques notations

- $F \in \mathcal{P}_{sym}((\mathbb{R}^2)^N)$ avec une densité (et également un moment d'ordre positif fini).
- Entropie : $H(F) := \frac{1}{N} \int_{(\mathbb{R}^2)^N} F(x) \log F(x) dx$.
- Information de Fisher : $I(F) := \frac{1}{N} \int_{(\mathbb{R}^2)^N} \frac{|\nabla F(x)|^2}{F(x)} dx$.
- $M_1(F) := \frac{1}{N} \int_{(\mathbb{R}^2)^N} \sum_{i=1}^N |x_i| F(dx)$ où $x_i \in \mathbb{R}^2$ représente la i-ème coordonnée de $x \in (\mathbb{R}^2)^N$.

Quelques notations

- $F \in \mathcal{P}_{sym}((\mathbb{R}^2)^N)$ avec une densité (et également un moment d'ordre positif fini).
- Entropie : $H(F) := \frac{1}{N} \int_{(\mathbb{R}^2)^N} F(x) \log F(x) dx$.
- Information de Fisher : $I(F) := \frac{1}{N} \int_{(\mathbb{R}^2)^N} \frac{|\nabla F(x)|^2}{F(x)} dx$.
- $M_1(F) := \frac{1}{N} \int_{(\mathbb{R}^2)^N} \sum_{i=1}^N |x_i| F(dx)$ où $x_i \in \mathbb{R}^2$ représente la i-ème coordonnée de $x \in (\mathbb{R}^2)^N$.
- $H(f^{\otimes N}) = H(f)$, $I(f^{\otimes N}) = I(f)$ et $M_k(f^{\otimes N}) = M_k(f)$.

Plan

- 1 Le modèle
- 2 Résultats d'existence et d'unicité

Propagation du chaos

- $\alpha \in (0,1)$ et $N \geq 2$ fixés.
- $M_1(F_0^N) < \infty$ et $H(F_0^N) < \infty$.

Alors

- Il existe une unique solution forte $(X_t^{i,N})_{t\geq 0, i=1,...,N}$ à (syst. part.).
- $X_t^{i,N} \neq X_t^{j,N}$ p.s. pour tout $t \geq 0$ et $i \neq j$.
- Il existe $C = C(\chi, \sup_{N \ge 2} H(F_0^N), \sup_{N \ge 2} M_1(F_0^N))$ telle que pour tout $t \ge 0$ et $N \ge 2$

$$H(F_t^N) \leq C(1+t), \quad M_1(F_t^N) \leq C(1+t),$$
 $\int_0^t I(F_s^N) ds \leq C(1+t).$

•
$$H(F_t^N) + \int_0^t I(F_s^N) ds = H(F_0^N) + \alpha_N(t)$$
 où $\alpha_N(t) \le Ct + \frac{1}{3} \int_0^t I(F_s^N) ds$.

- $H(F_t^N) + \int_0^t I(F_s^N) ds = H(F_0^N) + \alpha_N(t)$ où $\alpha_N(t) \le Ct + \frac{1}{3} \int_0^t I(F_s^N) ds$.
- $\mathbb{E}[|X_t^{1,N}-X_t^{2,N}|^{-\gamma}] \le C_{\gamma,\beta}(I(F_t^N)^\beta+1)$, où $\gamma\in(0,2)$ et $\beta>\gamma/2$.

- $H(F_t^N) + \int_0^t I(F_s^N) ds = H(F_0^N) + \alpha_N(t)$ où $\alpha_N(t) \le Ct + \frac{1}{3} \int_0^t I(F_s^N) ds$.
- $\mathbb{E}[|X_t^{1,N}-X_t^{2,N}|^{-\gamma}] \le C_{\gamma,\beta}(I(F_t^N)^\beta+1)$, où $\gamma\in(0,2)$ et $\beta>\gamma/2$.
- $S_t = \frac{1}{N^2} \sum_{i \neq j} \log |X_t^{i,N} X_t^{j,N}|$.

- $H(F_t^N) + \int_0^t I(F_s^N) ds = H(F_0^N) + \alpha_N(t)$ où $\alpha_N(t) \leq Ct + \frac{1}{3} \int_0^t I(F_s^N) ds$.
- $\mathbb{E}[|X_t^{1,N}-X_t^{2,N}|^{-\gamma}] \le C_{\gamma,\beta}(I(F_t^N)^{\beta}+1)$, où $\gamma \in (0,2)$ et $\beta > \gamma/2$.
- $S_t = \frac{1}{N^2} \sum_{i \neq j} \log |X_t^{i,N} X_t^{j,N}|$.
- $S_t = S_0 + M_t + R_t$ avec $\mathbb{E}[\sup_{[0,T]} |R_t|] \le C \int_0^T \mathbb{E}[|X_s^{1,N} X_s^{2,N}|^{-(\alpha+1)}] ds$.

• $\{\mathcal{L}((X_t^{1,N})_{t\geq 0}), N\geq 2\}$ est tendu dans $\mathbf{P}(\mathcal{L}([0,\infty),\mathbb{R}^2))$.

- $\{\mathcal{L}((X_t^{1,N})_{t\geq 0}), N\geq 2\}$ est tendu dans $\mathbf{P}(\mathcal{C}([0,\infty),\mathbb{R}^2))$.
- $\{\mathcal{L}(Q^N), N \geq 2\}$ is tight in $\mathbf{P}(\mathbf{P}(\mathcal{C}([0,\infty),\mathbb{R}^2)))$, où $Q^N := \frac{1}{N} \sum_{i=1}^N \delta_{(X^{i,N}_t)_{t\geq 0}}$.

- $\{\mathcal{L}((X_t^{1,N})_{t\geq 0}), N\geq 2\}$ est tendu dans $\mathbf{P}(\mathcal{C}([0,\infty),\mathbb{R}^2))$.
- $\{\mathcal{L}(Q^N), N \geq 2\}$ is tight in $\mathbf{P}(\mathbf{P}(C([0,\infty),\mathbb{R}^2)))$, où $Q^N := \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^{i,N})_{t \geq 0}}$.
- La limite $f \in \mathbf{P}(C([0,\infty),\mathbb{R}^2))$ de toute sous-suite convergente de Q^N est la loi d'un processus $(X_t)_{t\geq 0}$ solution de (\mathbf{eds}) vérifiant

$$\forall T>0, \quad \int_0^T I(f_s)ds < \infty \quad \text{et} \quad \sup_{[0,T]} M_1(f_s) < \infty.$$

Soient $\alpha \in (0,1)$ et $f_0 \in \mathcal{P}_1(\mathbb{R}^2)$ telle que $H(f_0) < \infty$. Il existe une unique solution forte $(X_t)_{t \geq 0}$ à (eds) tel que pour un $p > 2/(1-\alpha)$,

$$(f_t)_{t\geq 0}\in L^{\infty}_{loc}([0,\infty),\mathcal{P}_1(\mathbb{R}^2))\cap L^1_{loc}([0,\infty);L^p(\mathbb{R}^2)),$$

où f_t est la loi de X_t .

Soient $\alpha \in (0,1)$ et $f_0 \in \mathcal{P}_1(\mathbb{R}^2)$ telle que $H(f_0) < \infty$. Il existe une unique solution forte $(X_t)_{t \geq 0}$ à (eds) tel que pour un $p > 2/(1-\alpha)$,

$$(f_t)_{t\geq 0}\in L^{\infty}_{loc}([0,\infty),\mathcal{P}_1(\mathbb{R}^2))\cap L^1_{loc}([0,\infty);L^p(\mathbb{R}^2)),$$

où f_t est la loi de X_t .

• singularité du noyau \rightsquigarrow contrôlée par les estimées sur la norme L^p de la loi d'une solution.

Soient $\alpha \in (0,1)$ et $f_0 \in \mathcal{P}_1(\mathbb{R}^2)$ telle que $H(f_0) < \infty$. Il existe une unique solution forte $(X_t)_{t \geq 0}$ à (eds) tel que pour un $p > 2/(1-\alpha)$,

$$(f_t)_{t\geq 0}\in L^{\infty}_{loc}([0,\infty),\mathcal{P}_1(\mathbb{R}^2))\cap L^1_{loc}([0,\infty);L^p(\mathbb{R}^2)),$$

où f_t est la loi de X_t .

- singularité du noyau \rightsquigarrow contrôlée par les estimées sur la norme L^p de la loi d'une solution.

Soit $\alpha \in (0,1)$ et $f_0 \in \mathcal{P}_1(\mathbb{R}^2)$ telle que $H(f_0) < \infty$.

- (i) Il existe une unique solution f à (KS) telle que $f \in L^{\infty}_{loc}([0,\infty),\mathcal{P}_1(\mathbb{R}^2)) \cap L^1_{loc}([0,\infty);L^p(\mathbb{R}^2))$ pour un $p > \frac{2}{1-\alpha}$.
- (ii) Cette solution satisfait de plus pour tout T>0
 - $\int_0^T I(f_s)ds < \infty$,
 - $\nabla_{\mathsf{x}} f \in L^{2q/(3q-2)}(0,T;L^q(\mathbb{R}^2))$ pour tout $q \in [1,2)$,
 - $f \in C([0,\infty); L^1(\mathbb{R}^2)) \cap C((0,\infty); L^p(\mathbb{R}^2))$ pour tout $p \ge 1$,
 - pour tout $\beta \in C^1(\mathbb{R}) \cap W^{2,\infty}_{loc}(\mathbb{R})$ telle que β'' soit continue par morceaux à support compact,

$$\partial_{t}\beta(f) = \chi(K * f) \cdot \nabla_{x}(\beta(f)) + \triangle_{x}\beta(f) - \beta''(f)|\nabla_{x}f|^{2} + \chi\beta'(f_{s})f_{s}(\nabla_{x} \cdot K * f_{s}),$$

sur $[0,\infty) \times \mathbb{R}^2$ dans le sens des distributions.

Plan

1 Le modèle

Résultats d'existence et d'unicité

3 Propagation du chaos

- f_0 tel que $M_1(f_0) < \infty$ et $H(f_0) < \infty$.
- $(X_0^{i,N})_{i=1,...,N}$ famille de variables aléatoires i.i.d. de loi f_0 .
- $(X_t^{i,N})_{i=1,\dots,N,t\geq 0}$ solution de (syst. part.).
- $(X_t)_{t\geq 0}$ solution de (eds).

Alors $Q^N := \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^{i,N})_{t \geq 0}}$ converge faiblement vers $\mathcal{L}((X_t)_{t \geq 0})$ dans $\mathcal{P}(\mathcal{C}((0,\infty),\mathbb{R}^2))$.

- f_0 tel que $M_1(f_0) < \infty$ et $H(f_0) < \infty$.
- $(X_0^{i,N})_{i=1,\dots,N}$ famille de variables aléatoires i.i.d. de loi f_0 .
- $(X_t^{i,N})_{i=1,\dots,N,t>0}$ solution de (syst. part.).
- $(X_t)_{t>0}$ solution de (**eds**).

Alors $Q^N := \frac{1}{N} \sum_{i=1}^{N} \delta_{(X^{i,N}), \sim_0}$ converge faiblement vers $\mathcal{L}((X_t)_{t\geq 0})$ dans $\mathcal{P}(\mathcal{L}((0,\infty),\mathbb{R}^2))$.

• Pour tout $t \ge 0$, $Q_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_i^{i,N}}$ converge faiblement vers f_t dans $\mathcal{P}(\mathbb{R}^2)$.

• Soit f une probabilité sur E. Une suite (F^N) de probabilités symétriques sur E^N est entropiquement f-chaotique si $F_1^N \to f$ faiblement dans $\mathcal{P}(E)$ et $H(F^N) \to H(f)$ quand $N \to \infty$, où F_1^N désigne la première marginale de F^N .

•
$$H(f_t) + \int_0^t I(f_s) ds = H(f_0) + \chi(1-\alpha) \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}} ds$$
.

•
$$H(f_t) + \int_0^t I(f_s) ds = H(f_0) + \chi(1-\alpha) \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx) f_s(dy)}{|x-y|^{\alpha+1}} ds$$
.

•
$$L := \limsup_N \left[H(F_t^N) + \int_0^t I(F_s^N) ds \right] \le H(f_t) + \int_0^t I(f_s) ds.$$

•
$$H(f_t) + \int_0^t I(f_s) ds = H(f_0) + \chi(1-\alpha) \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}} ds$$
.

•
$$L := \limsup_N \left[H(F_t^N) + \int_0^t I(F_s^N) ds \right] \le H(f_t) + \int_0^t I(f_s) ds$$
.

•
$$L \leq H(f_0) + \limsup_N \frac{\chi(1-\alpha)}{N^2} \sum_{i \neq j} \int_0^t \mathbb{E} \left[\frac{1}{|X_s^{i,N} - X_s^{j,N}|^{\alpha+1}} \right] ds$$
.

•
$$H(f_t) + \int_0^t I(f_s) ds = H(f_0) + \chi(1-\alpha) \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}} ds$$
.

•
$$L := \limsup_N \left[H(F_t^N) + \int_0^t I(F_s^N) ds \right] \le H(f_t) + \int_0^t I(f_s) ds.$$

•
$$L \leq H(f_0) + \limsup_N \frac{\chi(1-\alpha)}{N^2} \sum_{i \neq j} \int_0^t \mathbb{E}\left[\frac{1}{|X_s^{i,N} - X_s^{j,N}|^{\alpha+1}}\right] ds$$
.

$$\bullet \ \lim_{N\to\infty} \textstyle \int_0^t \mathbb{E}\Big[\frac{1}{|X_s^{1,N}-X_s^{2,N}|^{\alpha+1}}\Big] ds = \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}} ds.$$

•
$$H(f_t) + \int_0^t I(f_s) ds = H(f_0) + \chi(1-\alpha) \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}} ds$$
.

•
$$L := \limsup_N \left[H(F_t^N) + \int_0^t I(F_s^N) ds \right] \le H(f_t) + \int_0^t I(f_s) ds.$$

•
$$L \leq H(f_0) + \limsup_N \frac{\chi(1-\alpha)}{N^2} \sum_{i \neq j} \int_0^t \mathbb{E}\left[\frac{1}{|X_s^{i,N} - X_s^{j,N}|^{\alpha+1}}\right] ds$$
.

$$\bullet \ \lim_{N\to\infty} \textstyle \int_0^t \mathbb{E}\Big[\frac{1}{|X_s^{1,N}-X_s^{2,N}|^{\alpha+1}}\Big] ds = \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}} ds.$$

•
$$\mathcal{L}(X_s^{1,N}, X_s^{2,N})$$
 converge faiblement vers $f_s \otimes f_s$.

- $H(f_t) + \int_0^t I(f_s) ds = H(f_0) + \chi(1-\alpha) \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}} ds$.
- $L := \limsup_N \left[H(F_t^N) + \int_0^t I(F_s^N) ds \right] \le H(f_t) + \int_0^t I(f_s) ds$.
- $L \leq H(f_0) + \limsup_N \frac{\chi(1-\alpha)}{N^2} \sum_{i \neq j} \int_0^t \mathbb{E}\left[\frac{1}{|X_s^{i,N} X_s^{j,N}|^{\alpha+1}}\right] ds$.
- $\bullet \ \lim_{N\to\infty} \int_0^t \mathbb{E}\Big[\frac{1}{|X_s^{1,N}-X_s^{2,N}|^{\alpha+1}}\Big]ds = \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{f_s(dx)f_s(dy)}{|x-y|^{\alpha+1}}ds.$
- $\mathcal{L}(X_s^{1,N}, X_s^{2,N})$ converge faiblement vers $f_s \otimes f_s$.
- $\liminf_N H(F_t^N) \ge H(f_t)$ et $\liminf_N \int_0^t I(F_s^N) ds \ge \int_0^t I(f_s) ds$.

- f_0 tel que $M_1(f_0) < \infty$ et $H(f_0) < \infty$.
- $(X_0^{i,N})_{i=1,\dots,N}$ famille de variables aléatoires i.i.d. de loi f_0 .
- $(X_t^{i,N})_{i=1,\dots,N,t\geq 0}$ solution de (syst. part.).
- $(X_t)_{t\geq 0}$ solution de (eds).

Alors pour tout $t \ge 0$, $(X_t^{i,N})_{i=1,\dots,N}$ est entropiquement X_t -chaotique.

Propagation du chaos

Théorème (C. Quininao, D.G.)

- f_0 tel que $M_1(f_0) < \infty$ et $H(f_0) < \infty$.
- $(X_0^{i,N})_{i=1,...,N}$ famille de variables aléatoires i.i.d. de loi f_0 .
- $(X_t^{i,N})_{i=1,\dots,N,t\geq 0}$ solution de (syst. part.).
- $(X_t)_{t>0}$ solution de (eds).

Alors pour tout $t \ge 0$, $(X_t^{i,N})_{i=1,...,N}$ est entropiquement X_t -chaotique.

• Pour tout $t \ge 0$, en notant F_{t1}^N la densité de $X_t^{1,N}$, on a $\lim_{N\to\infty}||F_{t1}^N-f_t||_{L^1(\mathbb{R}^2)}=0$.

Perspectives

- Vitesse de convergence du système de particules.
- Se rapprocher du cas critique $\alpha = 1$.

Merci pour votre attention.