Scaling limits of k-ary growing trees

Robin Stephenson

CEREMADE, Université Paris-Dauphine

joint work with Bénédicte Haas

Colloque JPS

The model

The model

Construction algorithm.

Fix an integer $k \ge 2$. We define a sequence $(T_n(k), n \ge 0)$ of random k-ary trees by the following recursion:

Construction algorithm.

Fix an integer $k \ge 2$. We define a sequence $(T_n(k), n \ge 0)$ of random k-ary trees by the following recursion:

• $T_0(k)$ is the tree with a single edge and two vertices, a root and a leaf.

Construction algorithm.

Fix an integer $k \ge 2$. We define a sequence $(T_n(k), n \ge 0)$ of random k-ary trees by the following recursion:

- $T_0(k)$ is the tree with a single edge and two vertices, a root and a leaf.
- given $T_n(k)$, to make $T_{n+1}(k)$, choose uniformly at random one of its edges, add a new vertex in the middle, thus splitting this edge in two, and then add k-1 new edges starting from the new vertex.

$$T_n(3)$$
 for $n = 0, 1, 2, 3$.

The model 00000

A few observations

• $T_n(k)$ has n internal nodes, kn+1 edges and (k-1)n+1 leaves

A few observations

- $T_n(k)$ has n internal nodes, kn+1 edges and (k-1)n+1 leaves
- When k = 2, we recover a well-known algorithm of Rémy, used to generate uniform binary trees. It is then well-known that the "size" of $T_n(2)$ is of order \sqrt{n} .

Size of $\mathcal{T}_n(k)$ and convergence

Distance between one point and the root

Let X_n be the point of $T_n(k)$ corresponding to the leaf of $T_0(k)$. Its distance to the root is of order $n^{1/k}$.

Lemma

 $d(\rho, X_n)$ is of order $n^{1/k}$ as n goes to infinity, and in fact the quotient

$$\frac{d(\rho,X_n)}{n^{1/k}}$$

converges a.s.

Distance between one point and the root

Let X_n be the point of $T_n(k)$ corresponding to the leaf of $T_0(k)$. Its distance to the root is of order $n^{1/k}$.

Lemma

 $d(\rho, X_n)$ is of order $n^{1/k}$ as n goes to infinity, and in fact the quotient

$$\frac{d(\rho,X_n)}{n^{1/k}}$$

converges a.s.

The proof of this lemma is simple. The process $(d(\rho, X_n), n \in \mathbb{Z}_+)$ is in fact a Markov chain: if we know that $d(\rho, X_n) = L$ then

$$d(\rho, X_{n+1}) = \begin{cases} L+1 \text{ with probability } \frac{L}{(k-1)n+1} \\ L \text{ with probability } 1 - \frac{L}{(k-1)n+1} \end{cases}$$

Martingale methods then easily give us the existence of the limit we want.

The main convergence theorem

Let $\mu_n(k)$ be the uniform measure on the set of leaves of $T_n(k)$.

Theorem

As n tends to infinity, we have

$$\left(\frac{T_n(k)}{n^{1/k}},\mu_n(k)\right) \stackrel{\mathbb{P}}{\longrightarrow} (T_k,\mu_k),$$

What kind of object is \mathcal{T}_k ?

What kind of object is \mathcal{T}_k ?

\mathbb{R} -trees

An \mathbb{R} -tree is a metric space (\mathcal{T},d) which satisfies the following two conditions:

What kind of object is T_k ?

•000000

\mathbb{R} -trees

An \mathbb{R} -tree is a metric space (\mathcal{T}, d) which satisfies the following two conditions:

• for all $x,y\in\mathcal{T}$, there exists a unique isometric map $\varphi_{x,y}\colon [0,d(x,y)]\to\mathcal{T}$ such that $\varphi_{x,y}(0)=x$ and $\varphi_{x,y}(d(x,y))=y$.

The model

An \mathbb{R} -tree is a metric space (\mathcal{T}, d) which satisfies the following two conditions:

- for all $x, y \in \mathcal{T}$, there exists a unique isometric map $\varphi_{x,y}: [0,d(x,y)] \to \mathcal{T}$ such that $\varphi_{x,y}(0) = x$ and $\varphi_{x,y}(d(x,y))=y.$
- for any continuous self-avoiding path $c: [0,1] \to \mathcal{T}$, we have $c([0,1]) = \varphi_{x,y}([0,d(x,y)])$, where x = c(0) et y = c(1).

Informally, an \mathbb{R} -tree is a connected union of line segments with no loops.

Graph-theoretical trees can be interpreted as \mathbb{R} -trees by considering each edge as a line segment and giving some length to each edge. In our case, the notation $\frac{T_n(k)}{n^{1/k}}$ means that we give to each edge of $T_n(k)$ a length equal to $n^{-1/k}$.

Graph-theoretical trees can be interpreted as \mathbb{R} -trees by considering each edge as a line segment and giving some length to each edge. In our case, the notation $\frac{T_n(k)}{n^{1/k}}$ means that we give to each edge of $T_n(k)$ a length equal to $n^{-1/k}$.

However, the structure of an \mathbb{R} -tree can be very complex, notably because the leaves or the branch points can form a dense subset.

Graph-theoretical trees can be interpreted as \mathbb{R} -trees by considering each edge as a line segment and giving some length to each edge. In our case, the notation $\frac{T_n(k)}{n^{1/k}}$ means that we give to each edge of $T_n(k)$ a length equal to $n^{-1/k}$.

However, the structure of an \mathbb{R} -tree can be very complex, notably because the leaves or the branch points can form a dense subset.

In practise, we will only want to look at rooted and measured trees: these are objects of the form $(\mathcal{T}, d, \rho, \mu)$ where ρ is a point on \mathcal{T} called the root and μ is a Borel probability measure on \mathcal{T} . Since d and ρ will never be ambiguous, we shorten the notation to (\mathcal{T}, μ) .

All our trees will also be compact.

What kind of object is \mathcal{T}_k ?

Self-similar fragmentation trees

Self-similar fragmentation trees

Let $\alpha<0$, and (\mathcal{T},d,ρ,μ) be a compact random \mathbb{R} -tree. For $t\geqslant 0$, we let $\mathcal{T}_1(t),\mathcal{T}_2(t),\ldots$ be the connected components of $\{x\in\mathcal{T},d(\rho,x)>t\}$.

Self-similar fragmentation trees

We say that (\mathcal{T}, μ) is a self-similar fragmentation tree with index α if, for all $t \geqslant 0$, conditionally on $\left(\mu\left(\mathcal{T}_i(s)\right); i \in \mathbb{N}, s \leqslant t\right)$:

- (Branching property) The subtrees $(\mathcal{T}_i(t), \mu_{\mathcal{T}_i(t)})$ are mutually independent.
- (Self-similarity) For any i, the tree $(\mathcal{T}_i(t), \mu_{\mathcal{T}_i(t)})$ has the same distribution as the original tree (\mathcal{T}, μ) , rescaled by $\mu \Big(\mathcal{T}_i(t)\Big)^{-\alpha}$.

The notation $\mu_{\mathcal{T}_i(t)}$ means the measure μ conditioned to the subset $\mathcal{T}_i(t)$, which is a probability distribution.

Self-similar fragmentation trees

Linking these trees to the self-similar fragmentation processes of Bertoin shows that their distribution is characterized by three parameters:

- The index of self-similarity α .
- An *erosion coefficent* $c \geqslant 0$ which determines how μ is spread out on line segments.
- A dislocation measure ν , which is a σ -finite measure on the set

$$\mathcal{S}^{\downarrow} = \{\mathbf{s} = (s_i)_{i \in \mathbb{N}} : s_1 \geqslant s_2 \geqslant \ldots \geqslant 0, \sum s_i \leqslant 1\}.$$

This measure determines how we allocate the mass when there is a branching point.

\mathcal{T}_k is a self-similar fragmentation tree

Theorem

The model

The tree T_k has the law of a self-similar fragmentation tree with:

- \bullet $\alpha = -\frac{1}{k}$.
- c = 0.
- The measure ν_k is k-ary and conservative: it is supported on sequences such that $s_i = 0$ for $i \ge k+1$ and $\sum_{i=1}^k s_i = 1$, and we have

$$\nu(\mathrm{d}\mathbf{s}) = \frac{(k-1)!}{k(\Gamma(\frac{1}{k}))^{(k-1)}} \prod_{i=1}^k s_i^{-(1-1/k)} \left(\sum_{i=1}^k \frac{1}{1-s_i} \right) \mathbf{1}_{\{s_1 \geqslant s_2 \geqslant ... \geqslant s_k\}} \mathrm{d}\mathbf{s}$$

Fractal dimension of \mathcal{T}_k

Corollary

The Hausdorff dimension of \mathcal{T}_k is almost surely equal to k.

This is a consequence of well-known results on fragmentation trees.

Labelling the edges

Labelling the edges

Each step of the algorithm creates k new edges. We give them labels 1 to k the following way:

- The upper half of the edge which was split in two is labeled 1
- The other new edges are labeled $2, \ldots, k$.

$T_n(k')$ inside $T_n(k)$

Consider an integer k' < k. Let $T_n(k, k')$ be the subset of $T_n(k)$ where we have erased all edges with labels k' + 1, k' + 2, ..., k and all their descendants.

If we call I_n the number of internal nodes which are in $T_n(k, k')$, then one can check that:

• Conditionally on I_n , $T_n(k, k')$ is distributed as $T_{I_n}(k')$.

$\mathcal{T}_{k'}$ inside \mathcal{T}_k

One can show that the sequence $\frac{I_n}{n^{k'/k}}$ converges a.s. to a random variable M. As a consequence we obtain:

Proposition

$$\frac{T_n(k,k')}{n^{1/k}} \stackrel{\mathbb{P}}{\longrightarrow} M \mathcal{T}_{k,k'}$$

where $\mathcal{T}_{k,k'}$ is a version of $\mathcal{T}_{k'}$ hidden in \mathcal{T}_k , and is independent of M.

More on the stacking

• It is in fact possible to extract directly from \mathcal{T}_k a subtree distributed as $\mathcal{T}_{k'}$, without going back to the finite case: at every branch point of \mathcal{T}_k , select only k' of the k branches at random with a well-chosen distribution.

Thank you!