Gaussian measures and fractional Brownian fields

Alexandre Richard
INRIA \& Ecole Centrale Paris

Colloque JPS
10 Avril 2014
(1) Introduction: fractional Brownian fields
(2) Gaussian measures and the fractional Brownian field

- Gaussian measures on a Banach space
- Wiener space of the fractional Brownian motion
- Regularity of the fractional Brownian field
(3) The multiparameter fractional Brownian motion
- Small balls of the fBf
- Geometric properties of the mpfBm

Plan

(1) Introduction: fractional Brownian fields
(2) Gaussian measures and the fractional Brownian field

- Gaussian measures on a Banach space
- Wiener space of the fractional Brownian motion
- Regularity of the fractional Brownian field
(3) The multiparameter fractional Brownian motion
- Small balls of the fBf
- Geometric properties of the mpfBm

One-parameter case

Hurst parameter, $h \in(0,1)$.
(1) fractional Brownian motion

$$
R_{h}(t, s)=\frac{1}{2}\left(t^{2 h}+s^{2 h}-|t-s|^{2 h}\right)
$$

One-parameter case

Hurst parameter, $h \in(0,1)$.
(1) fractional Brownian motion

$$
R_{h}(t, s)=\frac{1}{2}\left(t^{2 h}+s^{2 h}-|t-s|^{2 h}\right)
$$

(2) fractional Brownian field

$$
B_{t}^{h}=\int_{\mathbb{R}}\left(|t-s|^{h-1 / 2}-|s|^{h-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

One-parameter case

Hurst parameter, $h \in(0,1)$.
(1) fractional Brownian motion

$$
R_{h}(t, s)=\frac{1}{2}\left(t^{2 h}+s^{2 h}-|t-s|^{2 h}\right)
$$

(2) fractional Brownian field

$$
B_{t}^{h}=\int_{\mathbb{R}}\left(|t-s|^{h-1 / 2}-|s|^{h-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

(3) multifractional Brownian motion

$$
t \mapsto h(t)
$$

Multiparameter case

What extensions when $t \in \mathbb{R}$ is replaced by $t \in \mathbb{R}^{N}$?

Multiparameter case

What extensions when $t \in \mathbb{R}$ is replaced by $t \in \mathbb{R}^{N}$?

- Lévy fractional Brownian motion:

$$
B_{t}^{h}=\int_{\mathbb{R}^{N}}\left(\|t-s\|^{h-N / 2}-\|s\|^{h-N / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

Multiparameter case

What extensions when $t \in \mathbb{R}$ is replaced by $t \in \mathbb{R}^{N}$?

- Lévy fractional Brownian motion:

$$
B_{t}^{h}=\int_{\mathbb{R}^{N}}\left(\|t-s\|^{h-N / 2}-\|s\|^{h-N / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

- Fractional Brownian sheet: for $h=\left(h_{1}, \ldots, h_{n}\right)$,

$$
W_{t}^{h}=\int_{\mathbb{R}^{N}} \prod_{k=1}^{N}\left(\left|t_{k}-s_{k}\right|^{h_{k}-1 / 2}-\left|s_{k}\right|^{h_{k}-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

Multiparameter case

What extensions when $t \in \mathbb{R}$ is replaced by $t \in \mathbb{R}^{N}$?

- Lévy fractional Brownian motion:

$$
B_{t}^{h}=\int_{\mathbb{R}^{N}}\left(\|t-s\|^{h-N / 2}-\|s\|^{h-N / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

- Fractional Brownian sheet: for $h=\left(h_{1}, \ldots, h_{n}\right)$,

$$
W_{t}^{h}=\int_{\mathbb{R}^{N}} \prod_{k=1}^{N}\left(\left|t_{k}-s_{k}\right|^{h_{k}-1 / 2}-\left|s_{k}\right|^{h_{k}-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

\rightarrow the associated fractional Brownian fields are easily obtained.

Multiparameter case

What extensions when $t \in \mathbb{R}$ is replaced by $t \in \mathbb{R}^{N}$?

- Lévy fractional Brownian motion:

$$
B_{t}^{h}=\int_{\mathbb{R}^{N}}\left(\|t-s\|^{h-N / 2}-\|s\|^{h-N / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

- Fractional Brownian sheet: for $h=\left(h_{1}, \ldots, h_{n}\right)$,

$$
W_{t}^{h}=\int_{\mathbb{R}^{N}} \prod_{k=1}^{N}\left(\left|t_{k}-s_{k}\right|^{h_{k}-1 / 2}-\left|s_{k}\right|^{h_{k}-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

\rightarrow the associated fractional Brownian fields are easily obtained.

- The multiparameter fBm [Herbin \& Merzbach 06].

Multiparameter fBm

(T, \mathscr{T}, m) is a measurable space, $f, g \in L^{2}(T, m), h \in(0,1 / 2]$:

$$
k_{h}:(f, g) \mapsto \frac{1}{2}\left(m\left(f^{2}\right)^{2 h}+m\left(g^{2}\right)^{2 h}-m\left((f-g)^{2}\right)^{2 h}\right)
$$

is positive definite (where $\left.m\left(f^{2}\right)=\|f\|_{L^{2}(m)}^{2}\right)$.
(T, \mathscr{T}, m) is a measurable space, $f, g \in L^{2}(T, m), h \in(0,1 / 2]$:

$$
k_{h}:(f, g) \mapsto \frac{1}{2}\left(m\left(f^{2}\right)^{2 h}+m\left(g^{2}\right)^{2 h}-m\left((f-g)^{2}\right)^{2 h}\right)
$$

is positive definite (where $\left.m\left(f^{2}\right)=\|f\|_{L^{2}(m)}^{2}\right)$.

Definition

The multiparameter fBm is a centred Gaussian process with covariance:

$$
k_{h}(t, s)=\frac{1}{2}\left(\lambda([0, t])^{2 h}+\lambda([0, s])^{2 h}-\lambda([0, t] \Delta[0, s])^{2 h}\right)
$$

Applications of multiparameter Brownian fields

- Lévy fBm: its sample paths properties, e.g. [Pitt 78], [Talagrand 95], [Xiao 97], ...
- fractional Brownian sheet: [Kamont 96],
- sample paths properties, e.g. [Ayache \& Xiao 05]
- stochastic calculus, after the seminal work of Cairoli and Walsh on the Brownian sheet[Cairoli \& Walsh 75], extensions to stochastic integrals in the plane wrt general Gaussian processes [Dalang 99] [Balan \& Conus 13], pathwise approach [Mishura \& Ilchenko 06], and Malliavin approach [Tudor \& Viens 03], ...
- mpfBm, [Herbin \& Merzbach 06], [Herbin \& Xiao 14] + articles in preparation.

Plan

(1) Introduction: fractional Brownian fields
(2) Gaussian measures and the fractional Brownian field

- Gaussian measures on a Banach space
- Wiener space of the fractional Brownian motion
- Regularity of the fractional Brownian field
(3) The multiparameter fractional Brownian motion
- Small balls of the fBf
- Geometric properties of the mpfBm

Gaussian measures

Definition

A Gaussian measure μ on a separable Banach space E is a measure under which any continuous linear functional $x^{*} \in E^{*}$ has a Gaussian law.

Let H_{μ} be the Cameron-Martin Space of μ, defined as

$$
H_{\mu}={\overline{E^{*}}}^{L^{2}(\mu)},
$$

Gaussian measures

Definition

A Gaussian measure μ on a separable Banach space E is a measure under which any continuous linear functional $x^{*} \in E^{*}$ has a Gaussian law.

Let H_{μ} be the Cameron-Martin Space of μ, defined as

$$
H_{\mu}={\overline{E^{*}}}^{L^{2}(\mu)},
$$

or equivalently, using the canonical embedding S given by:

$$
S x^{*}=\int_{E} x\left\langle x^{*}, x\right\rangle \mathrm{d} \mu(x) .
$$

H_{μ} is densely and compactly embedded into E, and $\left(H_{\mu}, E, \mu\right)$ is called a Wiener space.

Constructing a new AWS

Proposition (see e.g. [Stroock 10])

Let H and H_{μ} be two separable Hilbert spaces, H_{μ} being endowed with a Wiener space structure $\left(H_{\mu}, E, \mu\right)$. H can also be endowed with such a structure by isometry, i.e. if $u: H_{\mu} \rightarrow H$ is a linear isometry, $\left(H, \tilde{u}(E), \tilde{u}_{*} \mu\right)$ is a Wiener space.

- Standard Wiener space $(\mathrm{h}=1 / 2): \mathscr{W}=\mathscr{L}(B)$ where B is a standard Brownian motion considered as a random variable taking values in $C_{0}[0,1]$.

$$
H_{W}=H_{0}^{1}=\left\{f(t)=\int_{0}^{t} \dot{f}(s) \mathrm{d} s, \dot{f} \in L^{2}[0,1]\right\} .
$$

- Standard Wiener space $(\mathrm{h}=1 / 2): \mathscr{W}=\mathscr{L}(B)$ where B is a standard Brownian motion considered as a random variable taking values in $C_{0}[0,1]$.

$$
H_{\mathscr{W}}=H_{0}^{1}=\left\{f(t)=\int_{0}^{t} \dot{f}(s) \mathrm{d} s, \dot{f} \in L^{2}[0,1]\right\} .
$$

- For any $h \in(0,1)$, the Wiener space of the fBm is given by:

$$
\left(\mathscr{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right), C_{0}[0,1], \mathscr{W}_{h}\right) .
$$

Representation of the fractional Brownian field

On [0, 1], the fBm can be represented as [Decreusefond et al. 99]:

$$
B_{h, t}=\int_{[0,1]} K_{h}(t, s) \mathrm{d} B_{s},
$$

where B is a Brownian motion, an for any h, K_{h} is a L^{2} kernel.

On [0, 1], the fBm can be represented as [Decreusefond et al. 99]:

$$
B_{h, t}=\int_{[0,1]} K_{h}(t, s) \mathrm{d} B_{s},
$$

where B is a Brownian motion, an for any h, K_{h} is a L^{2} kernel.
We proved that there is an operator $\mathcal{K}_{h}: H_{h} \rightarrow\left(C_{0}[0,1]\right)^{*}$ such that:

$$
B_{h, t}=\int_{C_{0}[0,1]}\left\langle\mathcal{K}_{h} k_{h}\left(\mathbf{1}_{[0, t]}, \cdot\right), x\right\rangle \mathrm{d} \mathbb{B}_{x}
$$

where \mathbb{B} is a white noise on $C_{0}[0,1]$ of control measure \mathscr{W}.

- Denote H_{h} the Cameron-Martin space of the h-fBM $\left(=\mathscr{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)\right)$;
- Denote H_{h} the Cameron-Martin space of the h-fBM $\left(=\mathscr{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)\right)$;
- Denote $H\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel k_{h};
- Denote H_{h} the Cameron-Martin space of the h-fBM $\left(=\mathscr{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)\right)$;
- Denote $H\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel k_{h};
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between H_{h} and $H\left(k_{h}\right)$;
- Denote H_{h} the Cameron-Martin space of the h-fBM $\left(=\mathscr{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)\right)$;
- Denote $H\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel k_{h};
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between H_{h} and $H\left(k_{h}\right)$;
- This defines a family of AWS $\left(H\left(k_{h}\right), E_{h}, \mu_{h}\right), h \in(0,1 / 2]$;
- Denote H_{h} the Cameron-Martin space of the h-fBM $\left(=\mathscr{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)\right)$;
- Denote $H\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel k_{h};
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between H_{h} and $H\left(k_{h}\right)$;
- This defines a family of AWS $\left(H\left(k_{h}\right), E_{h}, \mu_{h}\right), h \in(0,1 / 2]$;
- $\tilde{\mathcal{K}}_{h}=\tilde{u}_{1 / 2}^{T} \circ \mathcal{K}_{h} \circ u_{h}^{-1}$ maps $H\left(k_{h}\right)$ into $E_{1 / 2}^{*}$.
- Denote H_{h} the Cameron-Martin space of the h-fBM $\left(=\mathscr{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)\right)$;
- Denote $H\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel k_{h};
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between H_{h} and $H\left(k_{h}\right)$;
- This defines a family of AWS $\left(H\left(k_{h}\right), E_{h}, \mu_{h}\right), h \in(0,1 / 2]$;
- $\tilde{K}_{h}=\tilde{u}_{1 / 2}^{T} \circ \mathcal{K}_{h} \circ u_{h}^{-1}$ maps $H\left(k_{h}\right)$ into $E_{1 / 2}^{*}$.

Proposition

For any $h \in(0,1 / 2]$, there exists $\left(H\left(k_{h}\right), E_{h}, \mu_{h}\right)$ a Wiener space and an operator $\tilde{\mathcal{K}}_{h}$ of $H\left(k_{h}\right) \rightarrow E^{*}$ from which can be defined:

$$
B_{h, f}=\int_{E}\left\langle\tilde{\mathscr{K}}_{h} k_{h}(f, \cdot), x\right\rangle \mathrm{d} \mathbb{B}_{x}
$$

and for any fixed $h,\left\{B_{h, f}, f \in L^{2}\right\}$ is a $h-f B m$ with covariance k_{h}.

Regularity of the increments

Theorem

There exists a fractional Brownian field indexed over $(0,1 / 2] \times L^{2}(T, m)$ whose covariance satisfies: for any $\eta \in(0,1 / 4)$ and any compact subset D of $L^{2}(T, m)$, there exists $C_{\eta, D} \equiv C>0$ such that for any $f, f^{\prime} \in D$, and any $h, h^{\prime} \in[\eta, 1 / 2-\eta]$,

$$
\mathbb{E}\left(B_{h, f}-B_{h^{\prime}, f^{\prime}}\right)^{2} \leq C_{1}\left(h-h^{\prime}\right)^{2}+C_{2} m\left(\left(f-f^{\prime}\right)^{2}\right)^{2\left(h \wedge h^{\prime}\right)} .
$$

Application to the continuity of the sample paths

Definition (Totally bounded)

A metric space (\mathscr{S}, d) is totally bounded if for every $\varepsilon>0, \mathscr{S}$ can be covered by a finite number of balls of radius less than ε. The metric entropy $N(\varepsilon), \varepsilon>0$ is the smallest number of such balls.

Application to the continuity of the sample paths

Definition (Totally bounded)

A metric space (\mathscr{S}, d) is totally bounded if for every $\varepsilon>0, \mathscr{S}$ can be covered by a finite number of balls of radius less than ε. The metric entropy $N(\varepsilon), \varepsilon>0$ is the smallest number of such balls.

Theorem ([Dudley 73])

Let X be a centered Gaussian field indexed by \mathscr{S} and define the pseudo-distance d_{X} by: $d_{X}(s, t)^{2}=\mathbb{E}\left(X_{s}-X_{t}\right)^{2} \quad \forall s, t \in \mathscr{S}$.

Assume that \mathscr{S} is d_{X}-compact and that:

$$
\int_{0}^{1} \sqrt{\log \left(N\left(\mathscr{S}, d_{X}, \varepsilon\right)\right)} d \varepsilon<\infty
$$

Then X has a continuous version on \mathscr{S}.

Continuity of the fBf

Let d_{m} be the distance on $L^{2}(T, m)$.

Proposition

Let K be a compact subset with nonempty interior of $L^{2}(T, m)$. If

$$
\int_{0}^{1} \sqrt{\log N\left(K, d_{m}, \varepsilon\right)} d \varepsilon<\infty
$$

then $\left\{B_{h, f},(h, f) \in(0,1 / 2] \times K\right\}$ has a continuous modification.

Hölder continuity of the sample paths

Let $\boldsymbol{h}: t \in[0,1]^{N} \mapsto h(t) \in(0,1 / 2]$ and define the multiparameter multifractional Brownian motion from the $\mathrm{fBf} B$ on $L^{2}\left([0,1]^{N}\right.$, Leb.) as:

$$
\forall t \in[0,1]^{N}, \quad B_{t}^{\boldsymbol{h}}=B_{h(t), \mathbf{1}_{0, t]}} .
$$

Hölder continuity of the sample paths

Let $\boldsymbol{h}: t \in[0,1]^{N} \mapsto h(t) \in(0,1 / 2]$ and define the multiparameter multifractional Brownian motion from the fBf B on $L^{2}\left([0,1]^{N}\right.$, Leb.) as:

$$
\forall t \in[0,1]^{N}, \quad B_{t}^{\boldsymbol{h}}=B_{h(t), \mathbf{1}_{0, t]}} .
$$

The local Hölder regularity of a function f can be measured by:

- the pointwise coefficient:

$$
\alpha_{f}\left(t_{0}\right)=\sup \left\{\alpha: \limsup _{r \rightarrow 0} \sup _{s, t \in B\left(t_{0}, r\right)} \frac{|f(t)-f(s)|}{r^{\alpha}}<\infty\right\},
$$

Hölder continuity of the sample paths

Let $\boldsymbol{h}: t \in[0,1]^{N} \mapsto h(t) \in(0,1 / 2]$ and define the multiparameter multifractional Brownian motion from the fBf B on $L^{2}\left([0,1]^{N}\right.$, Leb.) as:

$$
\forall t \in[0,1]^{N}, \quad B_{t}^{\boldsymbol{h}}=B_{h(t), \mathbf{1}_{0, t]}} .
$$

The local Hölder regularity of a function f can be measured by:

- the pointwise coefficient:

$$
\alpha_{f}\left(t_{0}\right)=\sup \left\{\alpha: \limsup _{r \rightarrow 0} \sup _{s, t \in B\left(t_{0}, r\right)} \frac{|f(t)-f(s)|}{r^{\alpha}}<\infty\right\}
$$

- the local coefficient:

$$
\alpha_{f}\left(t_{0}\right)=\sup \left\{\alpha: \limsup _{r \rightarrow 0} \sup _{s, t \in B\left(t_{0}, r\right)} \frac{|f(t)-f(s)|}{|t-s|^{\alpha}}<\infty\right\}
$$

Hölder continuity of the sample paths

Theorem

Let us assume that for any $t \in[0,1]^{N}, \boldsymbol{h}(t)$ is bigger than its regularity, i.e. $\boldsymbol{h}(t) \geq \alpha_{\boldsymbol{h}}(t)$. Then, almost surely,

$$
\forall t \in[0,1]^{N}, \quad \alpha_{B^{h}}(t)=\tilde{\alpha}_{B^{h}}(t)=\boldsymbol{h}(t) .
$$

Plan

(1) Introduction: fractional Brownian fields

(2) Gaussian measures and the fractional Brownian field

- Gaussian measures on a Banach space
- Wiener space of the fractional Brownian motion
- Regularity of the fractional Brownian field
(3) The multiparameter fractional Brownian motion
- Small balls of the fBf
- Geometric properties of the mpfBm

Theorem

Let $h \in(0,1 / 2), K$ a compact set in $L^{2}(T, m)$. Then, for some $k_{1}>0$,

$$
\mathbb{P}\left(\sup _{f \in K}\left|B_{f}^{h}\right| \leq \varepsilon\right) \leq \exp \left(-k_{1} N\left(K, d_{h}, \varepsilon\right)\right),
$$

and if there exists ψ such that for any $\varepsilon>0, N\left(K, d_{h}, \varepsilon\right) \leq \psi(\varepsilon)$ and $\psi(\varepsilon) \approx \psi(\varepsilon / 2)$, then for some constant $k_{2}>0$,

$$
\mathbb{P}\left(\sup _{f \in K}\left|B_{f}^{h}\right| \leq \varepsilon\right) \geq \exp \left(-k_{2} \psi(\varepsilon)\right) .
$$

General remarks on the mpfBm

B_{t}^{h} will denote a multiparameter fBm . Recall that

$$
k_{h}(t, s)=\frac{1}{2}\left(\lambda([0, t])^{2 h}+\lambda([0, s])^{2 h}-\lambda([0, t] \Delta[0, s])^{2 h}\right) .
$$

- B^{h} is not increment stationary;

General remarks on the mpfBm

B_{t}^{h} will denote a multiparameter fBm . Recall that

$$
k_{h}(t, s)=\frac{1}{2}\left(\lambda([0, t])^{2 h}+\lambda([0, s])^{2 h}-\lambda([0, t] \Delta[0, s])^{2 h}\right) .
$$

- B^{h} is not increment stationary;
- for $a>0, d_{B^{h}}$ is equivalent to the Euclidean distance on $[a, 1]^{N}$;

General remarks on the mpfBm

B_{t}^{h} will denote a multiparameter fBm . Recall that

$$
k_{h}(t, s)=\frac{1}{2}\left(\lambda([0, t])^{2 h}+\lambda([0, s])^{2 h}-\lambda([0, t] \Delta[0, s])^{2 h}\right) .
$$

- B^{h} is not increment stationary;
- for $a>0, d_{B^{h}}$ is equivalent to the Euclidean distance on $[a, 1]^{N}$;
- away from 0 , modulus of continuity and Hausdorff measure of the graph are similar to Lévy fBm.

Lemma

For $h<1 / 2$, there are constants $k_{1}>0$ and $k_{2}>0$ such that for any fixed $r \in(0,1)$ and ε small enough (compared to r),

$$
\exp \left\{-k_{2} \frac{r^{2 N}}{\varepsilon^{N / h}}\right\} \leq \mathbb{P}\left(\sup _{t \in[0, r]^{N}}\left|B_{t}^{h}\right| \leq \varepsilon\right) \leq \exp \left\{-k_{1} \frac{r^{2 N}}{\varepsilon^{N / h}}\right\}
$$

Chung's LIL of the mpfBm

For every $h \in(0,1 / 2)$, let us denote $M^{h}(r)=\sup _{t \in[0, r]^{N}}\left|B_{t}^{h}\right|, r \in[0,1]$. We will also need $\psi_{h}(r)=r^{2 h}\left(\log \log \left(r^{-1}\right)\right)^{-h / N}$.

Theorem

Let $h \in(0,1 / 2)$ and let M^{h} and ψ_{h} be as defined above. Then there exists a constant $c \in(0, \infty)$ such that, almost surely:

$$
\liminf _{r \rightarrow 0} \frac{M^{h}(r)}{\psi_{h}(r)}=\beta
$$

Ideas of the proof

- Find $\left(r_{k}^{(1)}\right)_{k \in \mathbb{N}}$ and $\beta^{(1)}$ s.t.:

$$
\sum_{k} \mathbb{P}\left(M_{h}\left(r_{k}^{(1)}\right) / \psi_{h}\left(r_{k}^{(1)}\right) \leq \beta^{(1)}\right)<\infty
$$

using the small ball probabilities;

Ideas of the proof

- Find $\left(r_{k}^{(1)}\right)_{k \in \mathbb{N}}$ and $\beta^{(1)}$ s.t.:

$$
\sum_{k} \mathbb{P}\left(M_{h}\left(r_{k}^{(1)}\right) / \psi_{h}\left(r_{k}^{(1)}\right) \leq \beta^{(1)}\right)<\infty
$$

using the small ball probabilities;Borel-Cantelli lemma.

Ideas of the proof

- Find $\left(r_{k}^{(1)}\right)_{k \in \mathbb{N}}$ and $\beta^{(1)}$ s.t.:

$$
\sum_{k} \mathbb{P}\left(M_{h}\left(r_{k}^{(1)}\right) / \psi_{h}\left(r_{k}^{(1)}\right) \leq \beta^{(1)}\right)<\infty
$$

using the small ball probabilities;Borel-Cantelli lemma.

- Find $\left(r_{k}^{(2)}\right)_{k \in \mathbb{N}}$ and $\beta^{(2)}$ s.t.:

$$
\sum_{k} \mathbb{P}\left(M_{h}\left(r_{k}^{(2)}\right) / \psi_{h}\left(r_{k}^{(2)}\right) \leq \beta^{(2)}\right)=\infty
$$

using the small ball probabilities;

Ideas of the proof

- Find $\left(r_{k}^{(1)}\right)_{k \in \mathbb{N}}$ and $\beta^{(1)}$ s.t.:

$$
\sum_{k} \mathbb{P}\left(M_{h}\left(r_{k}^{(1)}\right) / \psi_{h}\left(r_{k}^{(1)}\right) \leq \beta^{(1)}\right)<\infty
$$

using the small ball probabilities;Borel-Cantelli lemma.

- Find $\left(r_{k}^{(2)}\right)_{k \in \mathbb{N}}$ and $\beta^{(2)}$ s.t.:

$$
\sum_{k} \mathbb{P}\left(M_{h}\left(r_{k}^{(2)}\right) / \psi_{h}\left(r_{k}^{(2)}\right) \leq \beta^{(2)}\right)=\infty
$$

using the small ball probabilities;

- Spectral representation: for $h<1 / 2$, there exists $\Delta^{h}(d x)$ on E such that:

$$
\begin{aligned}
& \left\|S x^{*}\right\|_{H}^{2 h}=\int_{E}\left(1-\cos \left\langle x^{*}, x\right\rangle\right) \Delta^{h}(d x) . \\
& \Rightarrow B_{t}^{h}=\frac{1}{\sqrt{2}} \int_{E}\left(1-e^{i\left\langle k_{1 / 2}\left(\mathbf{1}_{[0, t)} \cdot\right), x\right\rangle}\right) \mathrm{d} \mathbb{B}_{x}^{\Delta}
\end{aligned}
$$

Thank you for your attention.

囯 Ayache，A．and Xiao，Y．
Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets．
Journal of Fourier Analysis and Applications，11（4）：407－439， 2005.

目 Balan，R．and Conus，D．
Intermittency for the wave and heat equations with fractional noise in time．
arXiv preprint arXiv：1311．0021， 2013.
囦 R．Cairoli and J．B．Walsh
Stochastic integrals in the plane．
Acta Mathematica，134（1）：111－183， 1975.

围 Dalang, R. C.
Extending martingale measure stochastic integral with applications to spatially homogeneous SPDEs.
Electronic Journal of Probability, 4:1-29, 1999.
E Dalang, R. C. and Nualart, E.
Potential theory for hyperbolic SPDEs.
The Annals of Probability, 32(3):2099-2148, 2004.
R. Decreusefond and A.S. Üstünel.

Stochastic Analysis of the Fractional Brownian Motion.
Potential Analysis, 411:177-214, 1999.
圊 R. M. Dudley.
Sample Functions of the Gaussian Process.
The Annals of Probability, 1(1):66-103, February 1973.

围 L. Gross.
Abstract Wiener spaces.
In Fifth Berkeley symposium on Math. Statist. and Prob., pages
31-42, 1967.
冨 E. Herbin and E. Merzbach.
A Set-indexed Fractional Brownian Motion.
Journal of Theoretical Probability, 19(2):337-364, 2006.
E E. Herbin and A. Richard
Local Hölder regularity of set-indexed processes.
Preprint, 2012, arXiv:1203.0750v1.
E. Herbin and Y. Xiao

Sample paths properties of the set-indexed fractional Brownian motion.
In preparation, 2014.

A．Kamont
On the fractional anisotropic wiener field．
Probability and mathematical statistics，16（1）：85－98， 1996.
國 Yu．Mishura and S．Ilchenko
Stochastic integrals and stochastic differential equations involving fractional Brownian fields
Theory Probab．Math．Stat．，75：85－101， 2006.
图 L．D．Pitt
Local times for Gaussian vector fields．
Indiana Univ．Math．J．，27：309－330， 1978.
嗇 A．Richard
A fractional Brownian field indexed by L^{2} and a varying Hurst parameter．
Submitted， 2013.

D D. W. Stroock.
Gaussian measures on a Banach space, 2010.
Available at http://math.mit.edu/~dws/177/prob08.pdf.
(1) M. Talagrand

Hausdorff measure of trajectories of multiparameter fractional
Brownian motion.
The Annals of Probability,23(2):767-775, 1995.
Rudor, C. A. and Viens, F. G.
Ito formula and local time for the fractional Brownian sheet.
Electronic Journal of Probability, 8:1-31, 2003.
睩 Y. Xiao
Hausdorff measure of the graph of fractional Brownian motion.
Mathematical Proceedings of the Cambridge Philosophical
Society, 122(3):565-576,1997.

Reproducing Kernel Hilbert Space

Definition

Let (T, m) be a complete separable metric space and R a continuous covariance function on $T \times T$. There exists a unique Hilbert space $H(R)$ such that:
(1) $H(R)$ is a space of functions from $T \rightarrow \mathbb{R}$, and for all $t \in T$, $R(., t) \in H(R)$;
(2) the scalar product is given by: $\forall t \in T, \forall f \in H(R)$,

$$
(f, R(., t))_{H(R)}=f(t) .
$$

This is a separable Hilbert space. It satisfies $H(R)=\overline{\operatorname{Span}\{R(., t), t \in T\}}{ }^{\|\cdot\|_{H(R)}}$.

Local nondeterminism

For any fixed $h<1 / 2$, the fractional Brownian field is locally nondeterministic:

Lemma

Let $h \in(0,1 / 2)$. There exists a positive constant C_{0} such that for all $f \in L^{2}(T, m)$ and for all $r \leq\|f\|$, the following holds:

$$
\operatorname{Var}\left(B_{f}^{h} \mid B_{g}^{h},\|f-g\| \geq r\right)=C_{0} r^{2 h} .
$$

