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Introduction
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Description of the problem
Overview of the literature

Let X1, . . . ,Xn, be n independent and identically distributed
p-vectors,Xk = (Xk,1, . . . ,Xk,p)> for all k = 1, . . . , n,
following a multivariate normal distribution Np(0,Σ).

We assume that n, p −→ +∞.

Goodness-of-fit test problem:

H0 : Σ = Id
H1 : Σ 6= Id where Id is the p × p identity matrix

The distance between H0 and H1 can be evaluated by
considering different norms. For example :
‖Σ− Id‖F ≥ ϕ, ‖Σ− Id‖q ≥ ϕ, for q ∈ N.
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We restrict the set of matrices under the alternative to the
collection of matrices whose elements decrease polynomially
when moving away from the diagonal:

F(α, L) = {Σ ∈ C>0 ;
1

p

p∑
i=1

p∑
j=1
j>i

σ2
ij |i−j |2α ≤ L, ∀p and σii = 1}

Testing problem :

H0 : Σ = I

H1 : Σ ∈ F(α, L), such that
1

2p
‖Σ− I‖2

F ≥ ϕ2.

Denote Q(α, L, ϕ) = {Σ ∈ F(α, L) ;
1

p

p∑
i=1

p∑
j=1
j>i

σ2
ij ≥ ϕ2 }
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Also we consider the particular case when Σ is a Toeplitz
covariance matrix, i.e. σj ,j+k = σk for all 0 ≤ k ≤ p − 1.

Class of Toeplitz matrices :

T (α, L) = {Σ ∈ C>0,Σ is Toeplitz ;

p∑
k=1

k2ασ2
k ≤ L,∀p and σ0 = 1}

The alternative is given by :

Σ ∈ T (α, L) such that

p−1∑
k=1

σ2
k ≥ φ2

Remark : heuristically σ2
k replaces

1

p − k

p−k∑
j=1

σ2
j(j+k)
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Overview of the literature

Recall that a stationary Gaussian process Xj , j ≥ 1 with
covariances σk = cov(Xj ,Xj+k), has spectral density f , given
by :

f (x) =
1

2π

(
σ0 + 2

∞∑
k=1

σkcos(kx)
)

for x ∈ [−π, π]

Ermakov (1994), gives the sharp minimax rate for the
following testing problem associated to the spectral density :

H0 : f = f0 v.s H1 : f 6= f0 such that ‖f − f0‖2 ≥ ϕ.

This coincides with the case Σ Toeplitz and n = 1.

Gobulev, Nussbaum and Zhou (2010 Ann. Stat.) gives the
adaptive testing rate for the spectral density model using the
asymptotic equivalence to Gaussian white noise.
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Description of the problem
Overview of the literature

A test ψ is a measurable function with respect to the
observations, taking values in {0, 1}. The total error
probability of ψ

γ(ψ,Q(α, L, ϕ)) = η(ψ) + β(ψ,Q(α, L, ϕ))

where, type I error probability

η(ψ) = PI (ψ = 1)

and maximal type II error probability

β(ψ,Q(α, L, ϕ)) = sup
{Σ∈Q(α,L,ϕ)}

PΣ(ψ = 0).

Denote by γ the minimax total error probability over
Q(α, L, ϕ)

γ := γ(Q(α, L, ϕ)) = inf
ψ
γ(ψ,Q(α, L, ϕ)).

Rania Zgheib Sharp minimax test for large covariance matrices



Introduction
Testing procedure and results

Toeplitz matrices

Description of the problem
Overview of the literature

Our goal is to describe ϕ̃ = ϕ̃(n, p), called the separation rate,
such that, on the one hand,

γ −→ 1 if
ϕ

ϕ̃
−→ 0

in this case we say that we can not distinguish between the
two hypotheses.

On the other hand, there exists a test ψ such that, its total
error probability tends to 0

γ(ψ,Q(α, L, ϕ)) −→ 0 if
ϕ

ϕ̃
−→ +∞

and we say that ψ is a consistent test procedure. Therefore
we can distinguish between the two hypotheses.
Note that in the following the asymptotic are taken when
p →∞ and n→∞.
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Testing the covariance matrix has been studied by several methods
in the case of high-dimensional settings:

The largest eigenvalue (Johnstone 2001 Ann. Stat.),
( Berthet and Rigollet 2013 Ann. Stat.).

Modifying to the Likelihood ratio (Srivastava 2006), (Bai and
al. 2009 Ann. Stat.), the last authors used results from
random matrix theory

Maximum deviation (Xiao and Wu 2011 arXiv)

Mn = max
i ,j
|σ̂ij − σij |

Modifying the following statistic :

tr(Sn − Id)2, where Sn is the is the sample covariance matrix
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Ledoit and Wolf (2002, Ann. Stat.) proposed the following
test statistic:

Wn =
1

p
tr(Sn − Id)2 − p

n

( tr(Sn)

p

)2
+

p

n

where Sn is the sample covariance matrix.

Chen and al. (2010 JASA) proposed a U-statistic defined as
follows

Un =
1

n(n − 1)

n∑
i ,j=1
i 6=j

(XT
i Xj)

2 − 2

n

p∑
i=1

XT
i Xi + 1
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Description of the problem
Overview of the literature

Recently Cai and Ma (2013, Bernoulli), investigated the
problem from a minimax point of view.

They consider the alternative
H1 : Σ ∈ Θ; Θ = {Σ ∈ C>0; ‖Σ− I‖2

F ≥ ϕ2}.
The test statistic is the U-statistic Un proposed by Chen and
al. defined previously.

The separation rate is ϕ̃ = b
√

p/n.
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Test statistic :

D̂n =
1

n(n − 1)p

n∑
l ,k=1
l 6=k

p∑
i ,j=1
i<j

wijXk,iXk,jXl ,iXl ,j (1)

In order to define the weights (w∗ij )1≤i ,j≤p that will appear in
the optimal test procedure, and to distinguish the alternative
from the null at the best, we have to resolve the following
extremal problem:

1

p

p∑
i ,j=1
i<j

w∗ijσ
∗2
ij = sup

(wij )ij : wij≥0;

1
p

∑p

i ,j=1
i<j

w2
ij =1


inf{

Σ : Σ=(σij )i,j ;

Σ∈Q(α,L,ϕ)

} 1

p

p∑
i ,j=1
i<j

wijσ
2
ij
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The solutions of the optimization problem given above are:

w∗ij =
λ

2b(ϕ)

(
1−

( |i − j |
T

)2α)
, σ∗2ij = λ

(
1− (

|i − j |
T

)2α

)
+

T = bCT (α, L) · ϕ−
1
α c, λ = Cλ(α, L) · ϕ

2α+1
α

b2(ϕ) =
1

2p

p∑
i ,j=1
i<j

σ∗4ij = C (α, L) · ϕ
4α+1
α

w∗ij ≥ 0,
1

p

p∑
i ,j=1
i<j

w∗2ij =
1

2
and sup

i ,j
w∗ij �

1√
T

.
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Proposition

Assume ϕ −→ 0, α > 1. Under the null hypothesis:

EId(D̂n) = 0 , VarId(D̂n) =
1

n(n − 1)p
.

Under the alternative, for all Σ ∈ Q(α, L, ϕ),

EΣ(D̂n) =
1

p

p∑
i ,j=1
i<j

w∗ijσ
2
ij ≥ b(ϕ) , VarΣ(D̂n) =

T1

n(n − 1)p2
+

T2

np2

where,

T1 ≤ p(1 + o(1)) + c1 · T
√

T · p · EΣ(D̂n) + c2 · p2 · E2
Σ(D̂n)

T2 ≤ p · EΣ(D̂n) · o(1) + p · √p · EΣ(D̂n) · o(1) + c3 · p2 · E2
Σ(D̂n)
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We define the following test procedure

ψ∗ = I (D̂n > t), t > 0 (2)

Theorem (Upper bound)

Under the asymptotic conditions, additionally assume that ϕ −→ 0,
The test procedure ψ∗ defined in (4) with t > 0 has the following
properties :
Type I error probability : if n

√
pt −→ +∞ then η(ψ∗) −→ 0.

Maximal type II error probability : if

n2pϕ
4α+1
α C (α, L) −→ +∞ (3)

choose t such that t ≤ c · ϕ
4α+1

2α C 1/2(α, L) , for some constant
c ; 0 < c < 1, then β(ψ∗,Q(α, L, ϕ)) −→ 0.
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Theorem (Lower bound)

Under the asymptotic conditions, additionally assume that
α > 1/2, if ϕ is such that

n2pϕ
4α+1
α C (α, L) −→ 0

then for any test ψ, we have γ(ψ,Q(α, L, ϕ)) −→ 1, which implies
that

γ = inf
ψ
γ(ψ,Q(α, L, ϕ)) −→ 1.

As consequence of the previous theorems ϕ̃ = (C (α, L)n2p)−
α

4α+1

is the sharp minimax separation rate.
Remark : n, p −→ +∞ without restrictions.
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For the particular case when Σ is Toeplitz, we define the
following class under the alternative:

Q ′(α, Lφ) = {Σ ∈ T (α, L);

p∑
k=1

σ2
k ≥ φ2}

Test statistic :

Ân =
1

n(n − 1)

n∑
i=1

n∑
j=1

j 6=i

T∑
k=1

w∗k
(p − T )2

p∑
l1=T+1

p∑
l2=T+1

Xi ,l1Xi ,l1−kXj ,l2Xj ,l2−k

Note that the previous test statistic is different from the one
proposed by Ermakov(1994) and uses the independent copies
of the stationary process that we observe.
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We define the following test procedure

Ψ∗ = I (Ân > t), t > 0 (4)

Theorem (Upper bound)

Under the asymptotic conditions, in addition assume that ϕ −→ 0
and α > 1/4,
The test procedure Ψ∗ defined in (4) with t > 0 has the following
properties :
Type I error probabilty : if npt −→ +∞ then η(Ψ∗) −→ 0.
Maximal type II error probability : if

n2p2φ
4α+1
α C (α, L) −→ +∞ (5)

choose t such that t ≤ c · φ
4α+1

2α C 1/2(α, L) , for some constant
c ; 0 < c < 1, then β(Ψ∗,Q(α, L, ϕ)) −→ 0.
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Theorem (Lower bound)

Under the asymptotic conditions, in addition assume that α > 1/2,
if Ψ is such that

n2p2φ
4α+1
α C (α, L) −→ 0

then for any test Ψ, we have γ(Ψ,Q(α, L, ϕ)) −→ 1, which implies
that

γ = inf
Ψ
γ(Ψ,Q(α, L, ϕ)) −→ 1.

As consequence of the previous theorems ϕ̃ = (C (α, L)n2p2)−
α

4α+1

is the sharp minimax separation rate.
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Sharp minimax rate given by Ermakov(1994)

ϕ̃ = (C (α, L)p2)−
α

4α+1

Cai, Ren and Zhou (2013), estimated the Toeplitz covariance
matrix over classes included in T (α, L), with operator norm
and get the minimax rate:

(
log(np)

np
)2α/(2α+1).

We obtain sharp minimax rates for testing

ϕ̃ = (C (α, L)n2p2)−
α

4α+1 and ϕ̃ = (C (α, L)n2p)−
α

4α+1

for Σ Toeplitz and non-Toeplitz, respectively. The additional
factor p is due to the number of unknown parameters.
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Thank you for your attention
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