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Introduction
0

Unit

200 150 100 50 0

Turtles phylogenetic tree with habitats.
(Jaffe et al., 2011).

Dermochelys Coriacea

Homopus Areolatus

How can we explain the diversity, while accounting for the
phylogenetic correlations ?

Modelling: a shifted stochastic process on the phylogeny.

CA, PB, MM, SR Change-point Detection on a Tree 2/19



Stochastic Processes on Trees
Identifiability Problems and Counting Issues

Statistical Inference
Turtles Data Set

Outline

1 Stochastic Processes on Trees

2 Identifiability Problems and Counting Issues

3 Statistical Inference

4 Turtles Data Set

CA, PB, MM, SR Change-point Detection on a Tree 3/19



Stochastic Processes on Trees
Identifiability Problems and Counting Issues

Statistical Inference
Turtles Data Set

Principle of the Modeling
Shifts
Equivalency OU/BM

Stochastic Process on a Tree (Felsenstein, 1985)
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Only tip values are
observed

Brownian Motion:

Var [A | R ] = σ2t

Cov [A; B | R ] = σ2tAB
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Principle of the Modeling
Shifts
Equivalency OU/BM

BM vs OU

Equation Stationary State Variance
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dW (t) = σdB(t) None. σij = σ2tij
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(1 − e−αt)βt1 2 = ln(2) α

dW (t) = σdB(t)

+α[β(t)−W (t)]dt


µ = β0

γ2 =
σ2

2α

σij = γ2e−α(ti +tj )

× (e2αtij − 1)
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BM Shifts in the mean:

mchild = mparent + δ

0 200 400 600 800
−

2
−

1
0

1
2

time

ph
en

ot
yp

e

E

D

C

B

A
R

OU Shifts in the optimal value:

βchild = βparent + δ

CA, PB, MM, SR Change-point Detection on a Tree 6/19



Stochastic Processes on Trees
Identifiability Problems and Counting Issues

Statistical Inference
Turtles Data Set

Principle of the Modeling
Shifts
Equivalency OU/BM

Shifts

E

D

C

B

A

R

δ

0 200 400 600 800

−
4

−
2

0
2

4
6

time

ph
en

ot
yp

e

E

D

C

B

A

R

BM Shifts in the mean:

mchild = mparent + δ

0 200 400 600 800
−

2
−

1
0

1
2

time

ph
en

ot
yp

e

E

D

C

B

A
R

OU Shifts in the optimal value:

βchild = βparent + δ

CA, PB, MM, SR Change-point Detection on a Tree 6/19



Stochastic Processes on Trees
Identifiability Problems and Counting Issues

Statistical Inference
Turtles Data Set

Principle of the Modeling
Shifts
Equivalency OU/BM

Shifts

E

D

C

B

A

R

δ

0 200 400 600 800

0
5

10

time

ph
en

ot
yp

e

E

D

C

B
A

E

D

C

B
A

R

δ

BM Shifts in the mean:

mchild = mparent + δ

0 200 400 600 800
−

2
−

1
0

1
2

time

ph
en

ot
yp

e

E

D

C

B

A
R

OU Shifts in the optimal value:

βchild = βparent + δ

CA, PB, MM, SR Change-point Detection on a Tree 6/19



Stochastic Processes on Trees
Identifiability Problems and Counting Issues

Statistical Inference
Turtles Data Set

Principle of the Modeling
Shifts
Equivalency OU/BM

Shifts

E

D

C

B

A

R

δ

0 200 400 600 800

0
5

10

time

ph
en

ot
yp

e

E

D

C

B
A

E

D

C

B
A

R

δ

BM Shifts in the mean:

mchild = mparent + δ

0 200 400 600 800
0

2
4

6

time

ph
en

ot
yp

e

E
D

C

B
A

E
D

C

B
AR

δ

OU Shifts in the optimal value:

βchild = βparent + δ

CA, PB, MM, SR Change-point Detection on a Tree 6/19



Stochastic Processes on Trees
Identifiability Problems and Counting Issues

Statistical Inference
Turtles Data Set

Principle of the Modeling
Shifts
Equivalency OU/BM

Linear Regression Model
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T ∆ =


µ+ δ2

µ
µ+ δ1 + δ3

µ+ δ1

µ+ δ1



T =


Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4 Y5

Y1 1 0 0 1 1 0 0 0 0
Y2 1 0 0 1 0 1 0 0 0
Y3 1 1 0 0 0 0 1 0 0
Y4 1 1 1 0 0 0 0 1 0
Y5 1 1 1 0 0 0 0 0 1

 BM : Y = T∆BM+EBM
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TW (α)∆ =


λ+ w5δ2

λ
λ+ w2δ1 + w7δ3

λ+ w2δ1

λ+ w2δ1



W (α) = Diag(1− e−α(h−tpa(i)), 1 ≤ i ≤ m+n)

λ = µe−αh + β0(1− e−αh)

BM : Y = T∆BM+EBM

OU : Y = TW (α)∆OU+EOU
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Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Equivalencies

Number of shifts K fixed, several equivalent solutions.

µ

δ1 δ2

µ+δ2µ+δ1

µ

δ2 − δ1

δ1

Problem of over-parametrization: parsimonious configurations.
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Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.
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Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

∼
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Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Equivalent Parsimonious Allocations

Definition (Equivalency)

Two allocations are said to be equivalent (noted ∼) if they are
both parsimonious and give the same colors at the tips.

Find one solution Several existing Dynamic Programming
algorithms (Fitch, Sankoff, see Felsenstein, 2004).

Enumerate all solutions New recursive algorithm, adapted from
previous ones (and implemented in R).

+
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Equivalent Parsimonious Solutions for an OU Model.
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Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Collection of Models

New Problem Number of Equivalence Classes:
∣∣SPI

K

∣∣ ?∣∣SPI
K

∣∣ ≤ (m+n−1
K

)
=
(# of edges

# of shifts

)
A recursive algorithm to compute

∣∣SPI
K

∣∣ (implemented in R).

7→ Generally dependent on the topology of the tree.
+

Binary tree:
∣∣SPI

K

∣∣ =
(2n−2−K

K

)
=
(# of edges−# of shifts

# of shifts

)
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EM Algorithm
Model Selection

EM Algorithm: number of shifts K fixed
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`7

δ

`4 Y3 | Z2 ∼ N
(
Z2 + δ, `7σ

2
)

Z4 | Z1 ∼ N
(
Z1, `4σ

2
)

log pθ(Y ) = Eθ[ log pθ(Z ,Y ) | Y ]− Eθ[ log pθ(Z ) | Y ]

pθ(Z ,Y ) = pθ(Z1)
∏

1<j≤m

pθ(Zj |Zparent(j))
∏

1≤i≤n

pθ(Yi |Zparent(i))

EM Algorithm Maximize Eθ[ log pθ(Z ,Y ) | Y ]

E step Given θh, compute pθh (Z | Y )

M step θh+1 = argmaxθ Eθh [ log pθ(Z ,Y ) | Y ]
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Model Selection on K
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Proposition: LINselect Penalty

Proposition (Form of the Penalty and guarantees (α known))

Under our setting: Y = TW (α)∆ + γE with E ∼ N (0,V ), define the penalty:

pen(K) = A
n − K − 1

n − K − 2
EDkhi

[
K + 2, n − K − 2, exp

(
− log

∣∣∣SPI
K

∣∣∣− 2 log(K + 2)
)]

If κ < 1, and p ≤ min
(

κn
2+log(2)+log(n)

, n − 7
)

, we get:

E


∥∥∥E [Y ]− ŶK̂

∥∥∥2

V

γ2

 ≤ C(A, κ) inf
η∈M

{∥∥E [Y ]− Y ∗η
∥∥2

V

γ2
+ (Kη + 2) (3 + log(n))

}

with C(A, κ) a constant depending on A and κ only.

Based on Baraud et al. (2009) +
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Turtles Dataset

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Colors: habitats.
Boxes: selected EM regimes.

Habitat EM
No. of shifts 16 5

No. of regimes 4 6
lnL -133.86 -97.59

ln 2/α (%) 7.44 5.43
σ2/2α 0.33 0.22

CPU t (min) 65.25 134.49

(Jaffe et al., 2011)
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Turtles Dataset

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Colors: habitats.
Boxes: selected EM regimes.

Chelonia mydas
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Turtles Dataset
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Turtles Dataset
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Identifiability Problems and Counting Issues

Statistical Inference
Turtles Data Set

Conclusion and Perspectives

A general inference framework for trait evolution models.

Conclusions Some problems of identifiability arise.
An EM can be written to maximize likelihood.
Adaptation of model selection results to non-iid
framework.

R codes Available on GitHub:
https://github.com/pbastide/Phylogenetic-EM

Perspectives Multivariate traits.
Deal with uncertainty (tree, data).
Use fossil records.
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Model Selection with Unknown Variance

Theorem (Baraud et al. (2009))

Under the following setting:

Y ′ = E
[
Y ′
]

+ γE ′ with E ′ ∼ N (0, In) and S′ = {S ′η , η ∈M}

If Dη = Dim(S′
η), Nη = n − Dη ≥ 7, max(Lη,Dη) ≤ κn, with κ < 1, and:

Ω′ =
∑
η∈M

(Dη + 1)e−Lη < +∞

If: η̂ = argmin
η∈M

∥∥∥Y ′ − Ŷ ′η

∥∥∥2
(

1 +
pen(η)

Nη

)

with: pen(η) = penA,L(η) = A
Nη

Nη − 1
EDkhi[Dη + 1,Nη − 1, e−Lη ] , A > 1

Then: E


∥∥∥E [Y ′]− Ŷ ′η̂

∥∥∥2

γ2

 ≤ C(A, κ)

[
inf
η∈M

{∥∥E [Y ′]− Y ′η
∥∥2

γ2
+ max(Lη ,Dη)

}
+ Ω′

]
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IID Framework (α = 0)

Assume Kη = Dη − 1 ≤ p − 1 ≤ n − 8, ∀η ∈M

Then:

Ω′ =
∑
η∈M

(Dη + 1)e−Lη =
∑
η∈M

(Kη + 2)e−Lη

=

p−1∑
K=0

∣∣∣SPI
K

∣∣∣ (K + 2)e−LK =

p−1∑
K=0

∣∣∣SPI
K

∣∣∣ (K + 2)e
−(log

∣∣∣SPI
K

∣∣∣+2 log(K+2))

=

p−1∑
K=0

1

K + 2
≤ log(p) ≤ log(n)

And:

LK ≤ log
(n + m − 1

K

)
+2 log(K +2) ≤ K log(n+m−1)+2(K +1) ≤ p(2+log(2n−2))

Hence, if p ≤ min
(

κn
2+log(2)+log(n)

, n − 7
)

, then max(Lη ,Dη) ≤ κn for any η ∈M.
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Non-IID Framework (α 6= 0)

Cholesky decomposition: V = LLT Y ′ = L−1Y s ′ = L−1s E ′ = L−1E

Y ′ = E
[
Y ′
]

+ γE ′, with: E ′ ∼ N (0, In)

S ′η = L−1Sη, Ŷ ′η = ProjS′
η

Y ′ = argmin
a′∈S′

η

∥∥Y − La′
∥∥2

V
= L−1Ŷη

∥∥∥E [Y ]− Ŷη̂

∥∥∥2

V
=
∥∥∥E [Y ′]− Ŷ ′η̂

∥∥∥2

,
∥∥∥Y − Ŷη

∥∥∥2

V
=
∥∥∥Y ′ − Ŷ ′η

∥∥∥2

CritMC (η) =
∥∥∥Y ′ − Ŷ ′η

∥∥∥2
(

1 +
penA,L(η)

Nη

)
=
∥∥∥Y − Ŷη

∥∥∥2

V

(
1 +

penA,L(η)

Nη

)
back
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Initialization For tips
Propagation

Kl
k = argmin

1≤p≤K

{
Sil (p) + I{p 6= k}

}
Si (k) =

L∑
l=1

Sil (pl ) + I{pl 6= k} , ∀(p1, . . . pL) ∈ K1
k × . . .×KL

k

Ti (k) =
∑

(p1,...pL)∈K1
k×...×K

L
k

L∏
l=1

Til (pl ) =
L∏

l=1

∑
pl∈Kl

k

Til (pl )

Termination Sum on the root vector
back

(1,0,0) (1,0,0)
(0,∞,∞)(0,∞,∞)S

T
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k = argmin

1≤p≤K

{
Sil (p) + I{p 6= k}

}
Si (k) =

L∑
l=1

Sil (pl ) + I{pl 6= k} , ∀(p1, . . . pL) ∈ K1
k × . . .×KL

k

Ti (k) =
∑

(p1,...pL)∈K1
k×...×K

L
k

L∏
l=1

Til (pl ) =
L∏

l=1

∑
pl∈Kl

k

Til (pl )

Termination Sum on the root vector
back

· · ·

(Si (1), · · · , Si (K))

(Ti (1), · · · ,Ti (K))

(Si1
(k))k

(Ti1
(k))k

(SiL
(k))k

(TiL
(k))k
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Cardinal of Equivalence Classes

Initialization For tips
Propagation

Kl
k = argmin

1≤p≤K

{
Sil (p) + I{p 6= k}

}
Si (k) =

L∑
l=1

Sil (pl ) + I{pl 6= k} , ∀(p1, . . . pL) ∈ K1
k × . . .×KL

k

Ti (k) =
∑

(p1,...pL)∈K1
k×...×K

L
k

L∏
l=1

Til (pl ) =
L∏

l=1

∑
pl∈Kl

k

Til (pl )

Termination Sum on the root vector
back

(1,0,0) (1,0,0)
(0,∞,∞)(0,∞,∞)S

T

S(1) = 0 + 0 ; T(1) = 1 x 1 

S(2) = 0 + 1 ; T(2) = 1 x 1

S(3) = 0 + 1 ; T(3) = 1 x 1 

K1
1 = {1} 

K1
2 = {1} 

K1
3 = {1} 
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Initialization For tips
Propagation

Kl
k = argmin

1≤p≤K

{
Sil (p) + I{p 6= k}

}
Si (k) =

L∑
l=1

Sil (pl ) + I{pl 6= k} , ∀(p1, . . . pL) ∈ K1
k × . . .×KL

k

Ti (k) =
∑

(p1,...pL)∈K1
k×...×K

L
k

L∏
l=1

Til (pl ) =
L∏

l=1

∑
pl∈Kl

k

Til (pl )

Termination Sum on the root vector
back

(1,0,0) (1,0,0) (0,1,0) (0,0,1) (0,0,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,3)

(0,∞,∞)(0,∞,∞)(∞,0,∞)(∞,∞,0)(∞,∞,0)S
T

(0,1,1)

(1,1,0)

(1,1,2)

(2,2,2)

S
T

S
T

S
T

S
T
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Linking Shifts and Clustering

Assumption “No Homoplasy”: 1 shift = 1 new color

Proposition “K shifts ⇐⇒ K + 1 clusters”
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∼
The No Homoplasy hypothesis is not
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Definitions

T a rooted tree with n tips

N
(T )
K = |CK | the number of possible partitions of the tips in K clusters

A
(T )
K the number of possible marked partitions

Partitions in two groups for a binary
tree with 3 tips

Difference between N
(T3)
2 and A

(T3)
2 :

N
(T3)
2 = 3: partitions 1 and 2

are equivalent

A
(T3)
2 = 4: one marked color

(“white = ancestral state”)
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General Formula (Binary Case)

If T is a binary tree, consider T` and Tr the left and right sub-trees of T . Then:
N

(T )
K =

∑
k1+k2=K

N
(T`)
k1

N
(Tr )
k2

+
∑

k1+k2=K+1

A
(T`)
k1

A
(Tr )
k2

A
(T )
K =

∑
k1+k2=K

A
(T`)
k1

N
(Tr )
k2

+ N
(T`)
k1

A
(Tr )
k2

+
∑

k1+k2=K+1

A
(T`)
k1

A
(Tr )
k2

We get:

N
(T )
K+1 = N

(n)
K+1 =

(
2n − 2− K

K

)
and A

(T )
K+1 = A

(n)
K+1 =

(
2n − 1− K

K

)
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Recursion Formula (General Case)

If we are at a node defining a tree T that has p daughters, with sub-trees T1, . . . , Tp ,
then we get the following recursion formulas:



N
(T )
K =

∑
k1+···+kp=K

k1,...,kp≥1

p∏
i=1

N
(Ti )
ki

+
∑

I⊂J1,pK
|I |≥2

∑
k1+···+kp=K+|I |−1

k1,...,kp≥1

∏
i∈I

A
(Ti )
ki

∏
i /∈I

N
(Ti )
ki

A
(T )
K =

∑
I⊂J1,pK
|I |≥1

∑
k1+···+kp=K+|I |−1

k1,...,kp≥1

∏
i∈I

A
(Ti )
ki

∏
i /∈I

N
(Ti )
ki

No general formula. The result depends on the topology of the tree.

back
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Simulations Design (Uyeda and Harmon, 2014)

Topology of the tree fixed (unit height, λ = 0.1, with 64, 128, 256 taxa).

Initial optimal value fixed: β0 = 0

One ”base” scenario αb = 3, γ2
b = 0.5, Kb = 5.

α ∈ log(2)/{0.01, 0.05, 0.1, 0.2, 0.23, 0.3, 0.5, 0.75, 1, 2, 10}.
γ2 ∈ {0.3, 0.6, 3, 6, 12, 18, 30, 60, 150}/(2αb).

K ∈ {0, 1, 2, 3, 4, 5, 8, 11, 16}.
Shifts values ∼ 1

2
N (4, 1) + 1

2
N (−4, 1)

Shifts randomly placed at regular intervals separated by 0.1 unit length.

n = 200 repetitions : 16200 configurations.

CPU time on cluster MIGALE (Jouy-en-Josas):

α known: 6 minutes per estimation (66 days in total).

α unknown: 52 minutes per estimation (570 days in total).
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Log-Likelihood

t1 2 = ln(2) α γ2 K

−300

−200

−100

0

100

−800

−600

−400

−200

0

−300

−275

−250

−225

0.
01

0.
05 0.

1

0.
2

0.
23 0.

3

0.
5

0.
75 1 2 10

0.
05 0.

1

0.
5 1 2 3 5 10 25 0 1 2 3 4 5 8 11 16

Lo
g 

Li
ke

lih
oo

d

α

Known

Estimated

Log likelihood for a tree with 256 tips. Solid black dots are the median of the
log likelihood for the true parameters.
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t1 2 = ln(2) α γ2 K
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One Example
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Adjusted Rand Index

t1 2 = ln(2) α γ2 K
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Parameters: β0

t1 2 = ln(2) α γ2 K
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Parameters: α

t1 2 = ln(2) α γ2 K
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Parameters: γ2

t1 2 = ln(2) α γ2 K
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BM Model

Data n vectors of p traits at the tips: Yi =

Yi1
...

Yip


SDE dW(t) = ΣdBt , rate matrix R = ΣΣT (p × p)

Covariances Cov [Yil ;Yjq] = tijRlq for i , j tips, and l , q characters

Var [vec(Y)] = Cn ⊗ R

Shifts K shifts δ1, · · · , δK vectors size p

7→ All the characters shift at the same time
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BM Model

Linear Model Representation

vec(Y) = vec(∆TT ) + E with E ∼ N (0,V = Cn ⊗ R)

Incomplete Data Representation

Y3 | Z2 ∼ N
(

Z2 + δ, `7R
)

Y5

Y4

Y3

Y2

Y1

Z1

Z4

Z2

Z3

`7
δ
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OU Model: General Case

Data n vectors of p traits at the tips: Yi =

Yi1
...

Yip


SDE A (p × p) “selection strength”

dW(t) = −A(W(t)− β(t))dt + ΣdBt

Covariances

Cov [Xi ; Xj ] = e−Ati Γe−AT tj

+ e−A(ti−tij )

(∫ tij

0
e−Av ΣΣT e−AT vdv

)
e−AT (tj−tij )

Shifts K shifts δ1, · · · , δK vectors size p

7→ On the optimal values
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OU Model: A scalar

Assumption A = αIp “scalar”

Stationnary State S = 1
2αR

Fixed Root For i , j tips and l , q characters:

Cov [Yil ;Yjq] =
1

2α
e−2αh

(
e2αtij − 1

)
Rlq

7→ Can be reduced to a BM on a re-scaled tree
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EM algorithm

BM Natural generalization of the univariate case.

OU M step intractable in general.

Incomplete Data Model: Can readily handle missing data.
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Model Selection

Previous criterion cannot be applied

Solution: “Slope Heuristic”-based method

Massart (2007)

oracle inequality with known variance
penalty up to a multiplicative constant

Baudry et al. (2012)

Slope-heuristic method to calibrate the constant
Implemented in capushe (Brault et al., 2012)
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Model Selection: Toy Example
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Figure: Simulated Process.

CA, PB, MM, SR Change-point Detection on a Tree 26/28



References
Inference

Identifiability Issues
Simulations Results

Multivariate

Models
Inference

Model Selection: Toy Example
−

35
0

−
30

0
−

25
0

−
20

0
−

15
0

Contrast representation

penshape(m) (labels : Model names)

−
γ n

(ŝ
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