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Neurons = electrically excitable cells.

Action potential = spike of the electrical potential.

Physiological constraint: refractory period.

Model interacting spiking neurons.
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Microscopic modelling

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of R or R+).

Point process: N = {Ti , i ∈ Z} s.t. · · ·< T0 ≤ 0< T1 < · · · .
Point measure: N(dt) = ∑i∈Z δTi

(dt). Hence,
∫
f (t)N(dt) = ∑i∈Z f (Ti ).

Age process: (St−)t≥0.
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Microscopic modelling

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of R or R+).

Point process: N = {Ti , i ∈ Z} s.t. · · ·< T0 ≤ 0< T1 < · · · .
Point measure: N(dt) = ∑i∈Z δTi

(dt). Hence,
∫
f (t)N(dt) = ∑i∈Z f (Ti ).

Age process: (St−)t≥0.

Stochastic intensity

Heuristically,

λt = lim
∆t→0

1
∆t

P
(
N ([t,t + ∆t]) = 1 |FN

t−

)
,

where FN
t− denotes the history of N before time t.

Local behaviour: probability to find a new spike.

May depend on the past (e.g. refractory period, excitation, inhibition).
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0
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(i = 1, . . . ,n) +∑j 6=i
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0 hj→i (t−x)N j (dx)

)
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Age structured equations (K. Pakdaman, B. Perthame, D. Salort, 2010)

Age = delay since last spike.

u(t,s) =

{
probability density of finding a neuron with age s at time t.

ratio of the neural population with age s at time t.
∂u (t,s)

∂ t
+

∂u (t,s)

∂ s
+ Ψ(s,X (t))u (t,s) = 0

u (t,0) =
∫ +∞

0
Ψ(s,X (t))u (t,s)ds.

(PPS)

Key Parameter

X (t) =
∫ t

0
h(t−x)u(x ,0)dx (global neural activity)

X (t) ←→
∫ t−

0
h(t−x)N(dx).

This system has been designed to describe a population of interacting
neurons ⇒ Mean-field theory.
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Propagation of chaos: a tool to link the two scales

Mean field n-neurons system

The neurons are dependent.

Homogeneous interactions scaled by 1/n.

The dynamics is described by a growing system of equations.

Asymptotic when n→+∞

The neurons are independent.

Their distribution is described by one non-linear PDE.

Mean-field

Physics: kinetic equations (Kac, Sznitman), collective motion. Biology:
neurosciences (Stannat et al. 2014).

Hawkes: Mean field approximation (Delattre et al., 2015), inference
(Delattre et al., Bacry et al. 2016).

Here: Age dependent Hawkes processes.
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Generalized Hawkes processes

Renewal process Multivariate HP

λt = f (St−) λ i
t = Φ

(
n

∑
j=1

∫ t−

0
hj→i (t−x)N j (dx)

)

Age dependent Hawkes process (n-neurons system)

It is a multivariate point process (N i )i=1,..,n with intensity given for all
i = 1, . . . ,n by

λ
i
t = Ψ

(
S i
t−,

1
n

n

∑
j=1

∫ t−

0
h(t− z)N j (dz)

)
. “hj→i =

1
n
h”

Example: Ψ(s,x) = Φ(x)1s≥δ  strict refractory period of length δ .

How to approximate them as n→+∞ ?
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Scheme of the coupling method

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the n-particle
system and n i.i.d. copies of a limit process.

1 Find a good candidate for the limit process.

2 Show that it is well-defined (McKean-Vlasov fixed point problem).

3 Couple the dynamics in the right way.

4 Show the convergence.
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Limit process

Recall the intensities of the n-neurons system

λ
i
t = Ψ

(
S i
t−,

1
n

n

∑
j=1

∫ t−

0
h(t− z)N j (dz)

)
.

Independence at the limit ⇒ Law of Large Numbers.

Limit process

It is a point process N with intensity given by

λ t = Ψ

(
S t−,

∫ t−

0
h(t− z)E

[
N(dz)

])
.

The process N depends on its own distribution (McKean-Vlasov equation).
Its existence is not trivial.

The intensity of N depends on the time and the age.
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Link between the limit process and the (PPS) system

Recall the intensity of the limit process:

λ t = Ψ

(
S t−,

∫ t−

0
h(t− z)E

[
N(dz)

])
.

Proposition

If starting from a density, the distribution of the age S t− admits a density
denoted u(t, ·) for all t ≥ 0.
Moreover, u is the unique solution of the following (PPS) system

∂u (t,s)

∂ t
+

∂u (t,s)

∂ s
+ Ψ(s,X (t))u (t,s) = 0,

u (t,0) =
∫
s∈R

Ψ(s,X (t))u (t,s)ds,

where for all t ≥ 0, X (t) =
∫ t
0 h(t− z)u(z ,0)dz .

What about the real dynamics ?
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From the n-neurons system to the PDE

Propagation of chaos

Fix k in N. Then, the processes N1, . . . ,Nk of the n-neurons system behave at
the limit when n→+∞ as i.i.d. copies of the limit process N.

Theorem

If the ages at time 0 are i.i.d. with common density uin, then for all t ≥ 0,

1
n

n

∑
i=1

δS i
t−
−−−→
n→∞

u(t, ·),

where u is the unique solution of the (PPS) system with initial condition uin.

Link between (PPS) and a well-designed microscopic model.

Goodness-of fit tests: Renewal and Hawkes processes.
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