Spiking neural models: from point processes to partial differential equations.

J. Chevallier

Advisors: P. Reynaud Bouret (Nice) and F. Delarue (Nice)

Colloque jeunes probabilistes et statisticiens Les Houches

2016/04/18

< □ > < □ > < □ > < □ > < □ > < □ > = □

- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

Context	Two scales	Mean field approximation	Summary
•	0000	00000	
Biological context			

microscopic scale

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

・ロト ・四ト ・ヨト ・ヨト

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

・ロト ・四ト ・モト ・モト

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.
- Model interacting spiking neurons.

- Neurons = electrically excitable cells.
- Action potential = spike of the electrical potential.
- Physiological constraint: refractory period.
- Model interacting spiking neurons.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Microscopic	modelling		

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\cdots < T_0 \le 0 < T_1 < \cdots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Microscopic	modelling		

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\cdots < T_0 \le 0 < T_1 < \cdots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.
- Age process: $(S_{t-})_{t\geq 0}$.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Microscopic	modelling		

Microscopic modelling of spike trains

Time point processes = random countable sets of times (points of \mathbb{R} or \mathbb{R}_+).

- Point process: $N = \{T_i, i \in \mathbb{Z}\}$ s.t. $\cdots < T_0 \le 0 < T_1 < \cdots$.
- Point measure: $N(dt) = \sum_{i \in \mathbb{Z}} \delta_{T_i}(dt)$. Hence, $\int f(t)N(dt) = \sum_{i \in \mathbb{Z}} f(T_i)$.
- Age process: $(S_{t-})_{t\geq 0}$.

Stochastic intensity

Heuristically,

$$\lambda_t = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \mathbb{P}\left(N\left([t, t + \Delta t]\right) = 1 \,|\, \mathscr{F}_{t-}^N\right),$$

・ロト ・ 日本 ・ 日本 ・ 日本

where \mathscr{F}_{t-}^N denotes the history of N before time t.

- Local behaviour: probability to find a new spike.
- May depend on the past (e.g. refractory period, excitation, inhibition).

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Some classical p	ooint processes		

Context	Two scales	Mean field approximation	Summary
	0000		
Some classical	point processes		

$$T_0 = 0$$
 I.S.I. T_1 I.S.I. T_2 I.S.I. T_3 I.S.I. T_4

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Some classical p	oint processes		

$$T_{0} = 0 \quad \text{I.S.I.} \quad T_{1} \quad \text{I.S.I.} \quad T_{2} \quad \text{I.S.I.} \quad T_{3} \quad \text{I.S.I.} \quad T_{4}$$
Hawkes process: $\lambda_{t} = \Phi\left(\int_{0}^{t-} h(t-x)N(dx)\right).$

Context	Two scales	Mean field approximation	Summary
	0000		
Some classical	point processes		

Hawkes process:
$$\lambda_t = \Phi\left(\underbrace{\int_0^{t-} h(t-x)N(dx)}_{T < t}\right)$$
.

$$\sum_{\substack{T \in N \\ T < t}} h(t-T)$$

Context	Two scales	Mean field approximation	Summary
	0000		
Some classical	point processes		

Renewal process: $\lambda_t = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs. (refractory period)

$$\lambda_{t} = \Phi\left(\int_{0}^{t-} h(t-x)N(dx)\right).$$
Hawkes process: $\lambda_{t} = \Phi\left(\int_{0}^{t-} h(t-x)N(dx)\right).$

$$\sum_{\substack{T \in N \\ T < t}} h(t-T)$$

$$\frac{Model}{Goodness-of-fit}$$

イロト イロト イヨト イヨト 三日

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Some classical p	point processes		

$$T_{0} = 0 \xrightarrow{T_{1}} T_{1} \xrightarrow{T_{1}} T_{2} \xrightarrow{T_{2}} T_{3} \xrightarrow{T_{3}} T_{4}$$

$$Multivariate HP: \lambda_{t}^{i} = \Phi\left(\int_{0}^{t-} h_{i \to i}(t-x)N^{i}(dx) + \sum_{j \neq i} \int_{0}^{t-} h_{j \to i}(t-x)N^{j}(dx)\right).$$

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Some classica	l point processes		

Renewal process: $\lambda_t = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs. (refractory period)

$$T_{0} = 0 \xrightarrow{T_{1}} T_{1} \xrightarrow{I.S.I.} T_{2} \xrightarrow{I.S.I.} T_{3} \xrightarrow{I.S.I.} T_{4}$$

Multivariate HP: $\lambda_{t}^{i} = \Phi\left(\int_{0}^{t-} h_{i \rightarrow i}(t-x)N^{i}(dx)\right)$
 $(i = 1, ..., n) \qquad + \sum_{j \neq i} \int_{0}^{t-} h_{j \rightarrow i}(t-x)N^{j}(dx)$

 $i \rightarrow i$

・ロト ・ 一下・ ・ ヨト ・ ヨト

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Some classical	point processes		

Renewal process: $\lambda_t = f(S_{t-}) \Leftrightarrow \text{i.i.d.}$ ISIs. (refractory period)

$$T_0 = 0$$
 I.S.I. T_1 I.S.I. T_2 I.S.I. T_3 I.S.I. T_4

Multivariate HP:
$$\lambda_t^i = \Phi\left(\int_0^{t-} h_{i \to i}(t-x)N^i(dx) + \sum_{j \neq i} \int_0^{t-} h_{j \to i}(t-x)N^j(dx)\right).$$

æ

・ロッ ・ 理 ・ ・ ヨ ・ ・ 日 ・

Age = delay since last spike.

 $u(t,s) = \begin{cases} \text{probability density of finding a neuron with age } s \text{ at time } t. \\ \text{ratio of the neural population with age } s \text{ at time } t. \end{cases}$

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) = 0\\ u(t,0) = \int_0^{+\infty} \Psi(s,X(t))u(t,s)\,ds. \end{cases}$$
(PPS)

Key Parameter

$$X(t) = \int_0^t h(t-x)u(x,0)dx \quad \text{(global neural activity)}$$

Age = delay since last spike.

• $u(t,s) = \begin{cases} \text{probability density of finding a neuron with age } s \text{ at time } t. \\ \text{ratio of the neural population with age } s \text{ at time } t. \end{cases}$

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) = 0\\ u(t,0) = \int_0^{+\infty} \Psi(s,X(t))u(t,s)\,ds. \end{cases}$$
(PPS)

Key Parameter

$$\begin{split} X(t) &= \int_0^t h(t-x) u(x,0) dx \quad \text{(global neural activity)} \\ X(t) &\longleftrightarrow \quad \int_0^{t-} h(t-x) N(dx). \end{split}$$

Age = delay since last spike.

 $u(t,s) = \begin{cases} \text{probability density of finding a neuron with age } s \text{ at time } t. \\ \text{ratio of the neural population with age } s \text{ at time } t. \end{cases}$

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t))u(t,s) = 0\\ u(t,0) = \int_0^{+\infty} \Psi(s,X(t))u(t,s)\,ds. \end{cases}$$
(PPS)

Key Parameter

$$\begin{split} X(t) &= \int_0^t h(t-x) u(x,0) dx \quad \text{(global neural activity)} \\ X(t) &\longleftrightarrow \quad \int_0^{t-} h(t-x) N(dx). \end{split}$$

■ This system has been designed to describe a population of interacting neurons ⇒ Mean-field theory.

< ロ > ・ (四 > ・ 注 > ・ 注 >)

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Propagation of c	hans: a tool to link	the two scales	

- The neurons are dependent.
- Homogeneous interactions scaled by 1/n.
- The dynamics is described by a growing system of equations.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Propagation of ch	and a tool to link the	two scales	

- The neurons are dependent.
- Homogeneous interactions scaled by 1/n.
- The dynamics is described by a growing system of equations.

Asymptotic when $n \rightarrow +\infty$

- The neurons are independent.
- Their distribution is described by one non-linear PDE.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Propagation of ch	and a tool to link the	two scales	

- The neurons are dependent.
- Homogeneous interactions scaled by 1/n.
- The dynamics is described by a growing system of equations.

Asymptotic when $n \rightarrow +\infty$

- The neurons are independent.
- Their distribution is described by one non-linear PDE.

Mean-field

- Physics: kinetic equations (Kac, Sznitman), collective motion. Biology: neurosciences (Stannat et al. 2014).
- Hawkes: Mean field approximation (Delattre et al., 2015), inference (Delattre et al., Bacry et al. 2016).

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Propagation of ch	ans: a tool to link the	two scales	

- The neurons are dependent.
- Homogeneous interactions scaled by 1/n.
- The dynamics is described by a growing system of equations.

Asymptotic when $n \rightarrow +\infty$

- The neurons are independent.
- Their distribution is described by one non-linear PDE.

Mean-field

- Physics: kinetic equations (Kac, Sznitman), collective motion. Biology: neurosciences (Stannat et al. 2014).
- Hawkes: Mean field approximation (Delattre et al., 2015), inference (Delattre et al., Bacry et al. 2016).
- Here: Age dependent Hawkes processes.

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

Context	Two scales	Mean field approximation	Summary
		00000	
Generalized Hawke	s processes		

Renewal process

 $\lambda_t = f(S_{t-})$

Multivariate HP

$$\lambda_t^i = \Phi\left(\sum_{j=1}^n \int_0^{t-} h_{j \to i}(t-x) N^j(dx)\right)$$

Context	Two scales	Mean field approximation	Summary
0	0000	• 0 000	0
Generalized Hawke	es processes		

Context	Two scales	Mean field approximation	Summary
	0000	0000	
Generalized Hawke	s processes		

Age dependent Hawkes process (*n*-neurons system)

It is a multivariate point process $(N^i)_{i=1,..,n}$ with intensity given for all i = 1, ..., n by

$$\lambda_t^{i} = \Psi\left(S_{t-}^{i}, \frac{1}{n}\sum_{j=1}^{n}\int_0^{t-} h(t-z)N^{j}(dz)\right). \quad "h_{j\to i} = \frac{1}{n}h"$$

◆□> ◆□> ◆□> ◆□> ◆□>

• Example: $\Psi(s,x) = \Phi(x)\mathbb{1}_{s \ge \delta} \rightsquigarrow$ strict refractory period of length δ .

• How to approximate them as $n \to +\infty$?

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Scheme of the c	oupling method		

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the *n*-particle system and *n* i.i.d. copies of a *limit process*.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Scheme of the co	oupling method		

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the *n*-particle system and *n* i.i.d. copies of a *limit process*.

- I Find a good candidate for the limit process.
- **2** Show that it is well-defined (McKean-Vlasov fixed point problem).
- **3** Couple the dynamics in the right way.
- 4 Show the convergence.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Scheme of the co	oupling method		

Idea of coupling (Sznitman)

The idea is to find a suitable coupling between the particles of the *n*-particle system and *n* i.i.d. copies of a *limit process*.

I Find a good candidate for the limit process.

- **2** Show that it is well-defined (McKean-Vlasov fixed point problem).
- **3** Couple the dynamics in the right way.
- 4 Show the convergence.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Limit process			

$$\lambda_t^i = \Psi\left(S_{t-}^i, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Limit process			

$$\lambda_t^i = \Psi\left(S_{t-}^i, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

 \blacksquare Independence at the limit \Rightarrow Law of Large Numbers.

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Limit process			

$$\lambda_t^i = \Psi\left(\frac{S_{t-}^i}{n}, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

 \blacksquare Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

ヘロト ヘロト ヘヨト ヘヨト

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Limit process			

$$\lambda_t^i = \Psi\left(\frac{S_{t-}^i}{n}, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \Psi\left(\overline{\mathbf{S}}_{t-}, \int_0^{t-} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

• The process \overline{N} depends on its own distribution (McKean-Vlasov equation). Its existence is not trivial.

・ロト ・四ト ・日ト ・日ト

Context	Two scales	Mean field approximation	Summary
	0000	00000	
Limit process			

$$\lambda_t^i = \Psi\left(\frac{S_{t-}^i}{n}, \frac{1}{n}\sum_{j=1}^n \int_0^{t-} h(t-z)N^j(dz)\right).$$

Independence at the limit \Rightarrow Law of Large Numbers.

Limit process

It is a point process \overline{N} with intensity given by

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

The process N depends on its own distribution (McKean-Vlasov equation). Its existence is not trivial.

• The intensity of \overline{N} depends on the time and the age.

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Proposition

If starting from a density, the distribution of the age \overline{S}_{t-} admits a density denoted $u(t, \cdot)$ for all $t \ge 0$.

Moreover, u is the unique solution of the following (PPS) system

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}} \Psi(s,X(t)) u(t,s) ds, \end{cases}$$

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Proposition

If starting from a density, the distribution of the age \overline{S}_{t-} admits a density denoted $u(t, \cdot)$ for all $t \ge 0$.

Moreover, u is the unique solution of the following (PPS) system

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}} \Psi(s,X(t)) u(t,s) ds, \end{cases}$$

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

$$\overline{\lambda}_t = \Psi\left(\overline{S}_{t-}, \int_0^{t-} h(t-z) \mathbb{E}\left[\overline{N}(dz)\right]\right).$$

Proposition

If starting from a density, the distribution of the age \overline{S}_{t-} admits a density denoted $u(t, \cdot)$ for all $t \ge 0$.

Moreover, u is the unique solution of the following (PPS) system

$$\begin{cases} \frac{\partial u(t,s)}{\partial t} + \frac{\partial u(t,s)}{\partial s} + \Psi(s,X(t)) u(t,s) = 0, \\ u(t,0) = \int_{s \in \mathbb{R}} \Psi(s,X(t)) u(t,s) ds, \end{cases}$$

where for all $t \ge 0$, $X(t) = \int_0^t h(t-z)u(z,0)dz$.

What about the real dynamics ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Context	Two scales	Mean field approximation	Summary
	0000	0000	
E			

Propagation of chaos

Fix k in \mathbb{N} . Then, the processes N^1, \ldots, N^k of the *n*-neurons system behave at the limit when $n \to +\infty$ as i.i.d. copies of the limit process \overline{N} .

Context	Two scales	Mean field approximation	Summary
	0000	0000	

Propagation of chaos

Fix k in \mathbb{N} . Then, the processes N^1, \ldots, N^k of the *n*-neurons system behave at the limit when $n \to +\infty$ as i.i.d. copies of the limit process \overline{N} .

Theorem

If the ages at time 0 are i.i.d. with common density u^{in} , then for all $t \ge 0$,

$$\frac{1}{n}\sum_{i=1}^n \delta_{S_{t-}^i} \xrightarrow[n\to\infty]{} u(t,\cdot),$$

where u is the unique solution of the (PPS) system with initial condition u^{in} .

Context	Two scales	Mean field approximation	Summary
	0000	0000	

Propagation of chaos

Fix k in \mathbb{N} . Then, the processes N^1, \ldots, N^k of the *n*-neurons system behave at the limit when $n \to +\infty$ as i.i.d. copies of the limit process \overline{N} .

Theorem

If the ages at time 0 are i.i.d. with common density u^{in} , then for all $t \ge 0$,

$$\frac{1}{n}\sum_{i=1}^n \delta_{S_{t-}^i} \xrightarrow[n\to\infty]{} u(t,\cdot),$$

where u is the unique solution of the (PPS) system with initial condition u^{in} .

Link between (PPS) and a well-designed microscopic model.

Context	Two scales	Mean field approximation	Summary
	0000	0000	

Propagation of chaos

Fix k in \mathbb{N} . Then, the processes N^1, \ldots, N^k of the *n*-neurons system behave at the limit when $n \to +\infty$ as i.i.d. copies of the limit process \overline{N} .

Theorem

If the ages at time 0 are i.i.d. with common density u^{in} , then for all $t \ge 0$,

$$\frac{1}{n}\sum_{i=1}^n \delta_{S_{t-}^i} \xrightarrow[n\to\infty]{} u(t,\cdot),$$

where u is the unique solution of the (PPS) system with initial condition u^{in} .

- Link between (PPS) and a well-designed microscopic model.
- Goodness-of fit tests: Renewal and Hawkes processes.

Context	Two scales	Mean field approximation	Summary
			•
What more ?			

Moreover:

• The interaction functions $h_{j \rightarrow i}$ can be taken as i.i.d. random variables.

C	ontext	Two scales	Mean field approximation	Summary
		0000	00000	•
۷	Vhat more ?			

Moreover:

• The interaction functions $h_{i \rightarrow i}$ can be taken as i.i.d. random variables.

Outlook:

Highlight interesting dynamics at both scales.

Context	Two scales	Mean field approximation	Summary
	0000	00000	•
What more ?			

Moreover:

• The interaction functions $h_{i \rightarrow i}$ can be taken as i.i.d. random variables.

Outlook:

- Highlight interesting dynamics at both scales.
- Fluctuations around the mean limit behaviour (Central Limit Theorem).
- Goodness of fit tests for both micro and macro models at the same time.

