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Introduction Main results Conclusion

State of the art

Self-similar processes are important in probability: connect to
limit theorems, be of great interest in modeling, appear in
geophysics, hydrology, turbulence, economics....

Stable distributions are the only distributions that can be
obtained as limits of normalized sums of i.i.d random variables.
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State of the art

Let a = (a0, . . . , aK ),K , L ∈ N such that for q = 0, . . . , L

K∑
k=0

kqak = 0,
K∑

k=0

kL+1ak 6= 0

e.g K = 2, L = 1 : (a0, a1, a2) = (−1, 2,−1).

The increments of the process X with respect to a are defined
by

4p,nX =
K∑

k=0

akX (
k + p

n
) (1)

A usual statistical tool is the φ− variations:

Vn(φ,X ) =
1

n − K + 1

n−K∑
p=0

φ(|4p,nX |)
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State of the art

For a fBm with finite variance, generalized quadratic
variations (φ(x) = x2) are used ([Istas1997])

Wavelet: the increments of the process X are replaced by
wavelet coefficients ([Bardet2010], [Lacaux2007],
[Cohen2013]).

p-variations (φ(x) = xp, 0 < p < α) are used for fBm, for
other H-sssi processes with infinite variance (e.g. α-stable
processes )

Log-variations φ(x) = log |x | [Istas2012b]⇒ requires the
existence of logarithmic moments, rate of convergence is slow.

Complex variations φ(x) = x iM ,M ∈ R [Istas2012a].
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State of the art

For estimating α: [LeGuével2013] used p-variations
(p ∈ (0, c), c = min

u∈U
α(u)) to estimate the stability functions

of multistable processes

N Objective: estimate both H and α, using β-variations,
β ∈ (−1

2 , 0).
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H-sssi process

A real-valued process X

is H-self-similar (H-ss) if for all a > 0,

{X (at), t ∈ R} (d)
= aH{X (t), t ∈ R},

has stationary increments (si) if, for all s ∈ R,

{X (t + s)− X (s), t ∈ R} (d)
= {X (t)− X (0), t ∈ R}.
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α-stable process

A r.v X is said to have a symmetric α-stable distribution
(SαS) if there are parameters 0 < α ≤ 2, σ > 0 such that its
characteristic function has the following form:

Ee iθX = exp (−σα | θ |α)

We can write X ∼ Sα(σ, 0, 0).

σ = 1, a SαS is said to be standard.

X = (X1, . . . ,Xn) is a symmetric stable random vector if
any linear combination of the components of X is symmetric
α-stable (α ∈ (0, 2]).

{X (t), t ∈ T} is symmetric stable if all of its
finite-dimensional distributions are symmetric stable.
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Settings and assumptions

Let X be a H − sssi , SαS random process (α ∈ (0, 2])

The increments of X with respect to a are defined by

4p,nX =
K∑

k=0

akX (
k + p

n
) (2)

Let β ∈ R,−1
2 < β < 0, set

Vn(β) =
1

n − K + 1

n−K∑
p=0

|4p,nX |β (3)

Wn(β) = nβHVn(β) (4)

Ĥn =
1

β
log2

Vn/2(β)

Vn(β)
(5)
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An estimator of α

Let u, v ∈ R such that 0 < v < u.

gu,v : (0,+∞)→ R

gu,v (x) = u ln (Γ(1 + vx))− v ln (Γ(1 + ux)) ,

hu,v : (0,+∞)→ (−∞, 0)

hu,v (x) = gu,v (1/x),
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An estimator of α

ψu,v : R+ × R+ → R

ψu,v (x , y) = −v ln x + u ln y + C (u, v),

C (u, v) =
u − v

2
lnπ + u ln Γ(1 + v/2) + v ln Γ(

1− u

2
)

− v ln Γ(1 + u/2)− u ln Γ(
1− v

2
),

ϕu,v : R→ [0,+∞)

ϕu,v (x) =

{
0, x ≥ 0

h−1u,v (x), x < 0
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An estimator of α

Let β1, β2 ∈ R,−1/2 < β1 < β2 < 0.

Let α̂n defined by

α̂n = ϕ−β1,−β2 (ψ−β1,−β2(Vn(β1),Vn(β2)))
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An estimator of α

Let β1, β2 ∈ R,−1/2 < β1 < β2 < 0.
Let α̂n defined by
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Assumptions

Assumptions:

lim
n→∞

1

n

∑
p∈Z,|p|≤n

|cov(|4p,1X |β, |40,1X |β)| = 0 (6)

There exists a sequence {bn, n ∈ N}, lim
n→+∞

bn = 0 such that

lim sup
n→∞

1

nb2n

∑
p∈Z,|p|≤n

|cov(|4p,1X |β, |40,1X |β)| ≤ C 2, (7)

where C is a constant.
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Estimation of H and α

Theorem 1

1. Assume (6), then

lim
n→+∞

Ĥn
(P)
= H, lim

n→+∞
α̂n

(P)
= α.

2. Assume (7), then

Ĥn − H = OP(bn), α̂n − α = OP(bn).
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Examples

Well-balanced linear fractional stable motions
M: a SαS random measure (0 < α < 2) with Lebesgue
control measure.

X (t) =

∫
R

(|t − s|H−1/α − |s|H−1/α)M(ds)

with H ∈ (0, 1),H 6= 1/α.

Takenaka’s processes
t ∈ R, set Ct = {(x , r) ∈ R× R+, |x − t| ≤ r}, St = Ct4C0.
M: a SαS random measure (0 < α < 2) with control measure

m(dx , dr) = rν−2dxdr , (0 < ν < 1).

X (t) =

∫
R×R+

1St (x , r)M(dx , dr)

The process X is ν/α-sssi.
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Examples

Theorem 1 is true for

well-balanced linear fractional stable motions, with

bn =


n−1/2 , if H < L + 1− 2

α

n
αH−(L+1)α

4 , if H > L + 1− 2
α√

ln n
n , if H = L + 1− 2

α

(8)

Takenaka’s processes, with

bn = n
ν−1
2 , ν ∈ (0, 1) (9)
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CLT for fractional Brownian motions (α = 2) and SαS
Lévy motions

Fractional Brownian motion is the unique, up to a constant,
centered Gaussian H-sssi process, with H ∈ (0, 1]. Its
covariance is given by

R(t, s) =
C

2
{|s|2H + |t|2H − |s − t|2H}.

{X (t), t ≥ 0} with:

X (0) = 0 a.s,
has independent increments,
X (t)− X (s) ∼ Sα((t − s)1/α, 0, 0) for any 0 ≤ s < t <∞ and
0 < α ≤ 2

is called a SαS Lévy motion.
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CLT for fractional Brownian motions (α = 2), SαS Lévy
motions

Theorem 2

Let X be a fBm (or SαS-stable Lévy motion), then we have:
a)

lim
n→+∞

Ĥn
P
= H, lim

n→+∞
α̂n

P
= α

b)
√
n(Ĥn −H) converges in distribution as n→ +∞, to a centered

Gaussian variable.
c)
√
n(α̂n − α) converges in distribution as n→ +∞, to a centered

Gaussian variable.
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Settings

a = (a0, . . . , aK ), for q = 0, . . . , L,

K∑
k=0

kqak = 0,
K∑

k=0

kL+1ak 6= 0

p = (p1, . . . , pd) ∈ Nd , pi = 0, . . . ,K ,

ap = ap1 . . . apd

k = (k1, . . . , kd) ∈ Nd ,

4k,nX =
K∑

p=(p1,...,pd ),pi=0

apX (
k + p

n
)
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Settings

Fix −1/2 < β < 0, let

Vn(β) =
1

(n − K + 1)d

n−K∑
k=(k1,...,kd ),ki=0

|4k,nX |β

Wn(β) = nβHVn(β)

Ĥn =
1

β
log2

Vn/2(β)

Vn(β)
.

Fix −1/2 < β1 < β2 < 0:

α̂n = ϕ−β1,−β2 (ψ−β1,−β2(Vn(β1),Vn(β2)))
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Estimation of H and α

Asumptions:

lim
n→+∞

1

nd

∑
k=(k1,...,kd )∈Zd ,|ki |≤n

∣∣∣cov(|4k,1X |β, |40,1X |β)
∣∣∣ = 0,

(10)

There exists a sequence {bn, n ∈ N} and a constant C such
that lim

n→+∞
bn = 0, bn/2 = O(bn) and

lim
n→+∞

1

ndb2n

∑
k=(k1,...,kd )∈Zd ,|ki |≤n

∣∣∣cov(|4k,1X |β, |40,1X |β)
∣∣∣ ≤ C 2.

(11)



Introduction Main results Conclusion

Estimation of H and α

Asumptions:

lim
n→+∞

1

nd

∑
k=(k1,...,kd )∈Zd ,|ki |≤n

∣∣∣cov(|4k,1X |β, |40,1X |β)
∣∣∣ = 0,

(10)

There exists a sequence {bn, n ∈ N} and a constant C such
that lim

n→+∞
bn = 0, bn/2 = O(bn) and

lim
n→+∞

1

ndb2n

∑
k=(k1,...,kd )∈Zd ,|ki |≤n

∣∣∣cov(|4k,1X |β, |40,1X |β)
∣∣∣ ≤ C 2.

(11)



Introduction Main results Conclusion

Estimation of H and α

Theorem 3

1. Assume (10), then

lim
n→+∞

Ĥn
(P)
= H, lim

n→+∞
α̂n

(P)
= α.

2. Assume (11), then lim
n→+∞

Ĥn(β) = H, (P),

Ĥn − H = OP(bn), α̂n − α = OP(bn).
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Examples

Theorem 3 is true for:

Lévy fractional Brownian field with

bn = n−d/2

Well-balanced linear fractional stable field with

bn =


n−d/2 , if αH−(L+1)αd

2 < −d
n
αH−(L+1)αd

4 , if − d < αH−(L+1)αd
2 < 0√

ln n
n , if αH−(L+1)αd

2 = −d

Takenaka random field with

bn = n
ν−1
2
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Definition

Let 0 < α ≤ 2 and H : U → (0, 1) be an infinite differentiable
function on a closed interval U ⊂ R. Let

X (t) =

∫
R

(|t − s|H(t)−1/α − |s|H(t)−1/α)Mα(ds) (12)

where Mα is a symmetric α-stable random measure on R which
control measure ds is Lebesgue measure.

0 < α < 2, X (t) is called a linear multifractional stable motion

α = 2, X (t) is called a multifractional Brownian motion
(M(du) is the standard Gaussian measure on R).
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Settings

Let

4p,nX =
K∑

k=0

akX

(
k + p

n

)
.

Let γ be fixed such that

0 < lim sup
t∈U

H(t) < γ < 1.

Define a set νγ,n(u) and its cardinal by

νγ,n(u) := {k ∈ Z : ∀p = 0, . . . ,K , |k + p

n
− u| ≤ 1

nγ
},

υγ,n(u) := #νγ,n(u)

{k + p

n
, k ∈ νγ,n(u), p = 0, . . . ,K} ⊂ U.
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Settings

Let β ∈ (−1/2, 0) be fixed and

Vu,n(β) =
1

υγ,n(u)

∑
k∈νγ,n(u)

|4k,nX |β

Wu,n(β) = nβH(u)Vu,n(β).

Ĥn(u) :=
1

β
log2

Vu,n/2(β)

Vu,n(β)
.

Fix −1/2 < β1 < β2 < 0,

α̂n = ϕ−β1,−β2 (ψ−β1,−β2(Vu,n(β1),Vu,n(β2))) .
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Estimation of H and α

Theorem 1

Let X be a linear multifractional stable motion or multifractional
Brownian motion. For u ∈ U fixed, then

lim
n→+∞

Ĥn(u) = H(u), Ĥn(u)− H(u) = OP(dn), α̂n − α = OP(dn)
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Estimation of H and α

where dn is defined by

dn =



n
α(H(u)−γ)

4 H(u) < L + 1− 2
α ,H(u) < γ ≤ 2+αH(u)

2+α

n
γ−1
2 H(u) < L + 1− 2

α , γ >
2+αH(u)

2+α

n
α(1−γ)(H(u)−(L+1))

4 H(u) > L + 1− 2
α , γ ≥

L+1
L+2−H(u)

n
α(H(u)−γ)

4 H(u) > L + 1− 2
α ,H(u) < γ < L+1

L+2−H(u)

n
α(H(u)−γ)

4 H(u) = L + 1− 2
α ,H(u) < γ < (L+1)α

2+α

n
γ−1
2

√
ln(n) H(u) = L + 1− 2

αγ ≥
(L+1)α
2+α

for linear multifractional stable motion

dn =

{
nH(u)−γ if H(u) < γ ≤ 1+2H(u)

3

n
γ−1
2 if γ > 1+2H(u)

3

for multifractional Brownian motion.



Introduction Main results Conclusion

Perspective

Improve results in case of multifractional stable motions?

Other mulfractional multistable processes?

...
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Thank you for your attention!
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Sketch of proofs - Auxiliary lemmas

(S , µ): a measure space, f , g ∈ Lα(S , µ), M: a SαS random
measure on S with control measure µ. Set

U =

∫
S
f (s)M(ds),V =

∫
S
g(s)M(ds), ||U||αα = ||V ||αα = 1,

∫
S
f (s)g(s)ds ≤ η < 1,Cβ =

2β+1/2Γ(β+1
2 )

Γ(−β2 )
.



Introduction Main results Conclusion

Sketch of proofs - Auxiliary lemmas

(S , µ): a measure space, f , g ∈ Lα(S , µ), M: a SαS random
measure on S with control measure µ. Set

U =

∫
S
f (s)M(ds),V =

∫
S
g(s)M(ds), ||U||αα = ||V ||αα = 1,

∫
S
f (s)g(s)ds ≤ η < 1,Cβ =

2β+1/2Γ(β+1
2 )

Γ(−β2 )
.



Introduction Main results Conclusion

Sketch of proofs - Auxiliary lemmas

Lemma 2

E|U|β =
Cβ√
2π

∫
R

Ee iUy

|y |1+β
dy ,

E|U|β|V |β =
CβCβ

2π

∫
R2

Ee ixU+iyV

|x |1+β|y |1+β
dxdy

in sense of distribution.

There exists a constant C (η) such that

|cov(|U|β, |V |β)| ≤ C (η)

∫
S
|f (s)g(s)|α/2ds.
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Sketch of proofs - Auxiliary lemmas

Lemma 3

Let X be a standard SαS random variable with 0 < α ≤ 2, let
−1 < γ < 0 then

E|X |γ < +∞,

moreover

E|X |γ =
2γΓ(γ+1

2 )Γ(1− γ
α)

√
πΓ(1− γ

2 )
.
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Sketch of proofs - Auxiliary lemmas

gu,v is a strictly decreasing function on (0,+∞) and

lim
x→0

gu,v (x) = 0, lim
x→+∞

gu,v (x) = −∞.

hu,v is a strictly increasing function on (0,+∞) and

lim
x→+∞

hu,v (x) = 0, lim
x→0

hu,v (x) = −∞.

hu,v is invertible and h−1u,v is continuous and differentiable on
(−∞, 0).
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Sketch of proofs - Auxiliary lemmas

ψ−β1,−β2 (Wn(β1),Wn(β2)) converges in probability to
ψ−β1,−β2(E|40,1X |β1 ,E|40,1X |β2) = h−β1,−β2(α) as
n→ +∞.

ψ−β1,−β2(Wn(β1),Wn(β2))− h−β1,−β2(α) = OP(bn).

ϕ−β1,−β2 ◦ ψ−β1,−β2 is continuous at
x0 = (E|40,1X |β1 ,E|40,1X |β2).
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