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State of the art

@ Self-similar processes are important in probability: connect to
limit theorems, be of great interest in modeling, appear in
geophysics, hydrology, turbulence, economics....

@ Stable distributions are the only distributions that can be
obtained as limits of normalized sums of i.i.d random variables.
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o Let a=(ap,...,ak),K,L € N such that for g =0,...,L

K K
> Kla=0,> kMla #£0
k=0 k=0

eg K=2,L=1:(ap,a1,a)=(-1,2,-1).
@ The increments of the process X with respect to a are defined
by

k+p

DApnX = ZakX( ) (1)

k=0
@ A usual statistical tool is the ¢— variations:

1 n—K
Va(o, X) = K1 ; o(|2p,nX])
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State of the art

@ For a fBm with finite variance, generalized quadratic
variations (¢(x) = x2) are used ([Istas1997])
@ Wavelet: the increments of the process X are replaced by

wavelet coefficients ([Bardet2010], [Lacaux2007],
[Cohen2013]).

@ p-variations (¢(x) = xP,0 < p < «) are used for fBm, for
other H-sssi processes with infinite variance (e.g. a-stable
processes )

o Log-variations ¢(x) = log |x| [Istas2012b]=- requires the
existence of logarithmic moments, rate of convergence is slow.

o Complex variations ¢(x) = x™ M € R [Istas2012a].
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State of the art

e For estimating a: [LeGuével2013] used p-variations
(pe(0,¢),c= milr} a(u)) to estimate the stability functions
ue

of multistable processes

A Objective: estimate both H and «, using (-variations,

B e (—3,0).
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H-sssi process

A real-valued process X
e is H-self-similar (H-ss) if for all a > 0,

{X(at), t € R} @ al{X(t),t e R},
o has stationary increments (si) if, for all s € R,

(X(t+5) = X(s), t € R} L {X(¢) — X(0), t € R}.



Introduction
ocoe

«-stable process

@ A r.v X is said to have a symmetric a-stable distribution
(5aS) if there are parameters 0 < a < 2,0 > 0 such that its
characteristic function has the following form:
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«-stable process

@ A r.v X is said to have a symmetric a-stable distribution
(5aS) if there are parameters 0 < a < 2,0 > 0 such that its
characteristic function has the following form:

e = exp (—c® | 0 |%)

We can write X ~ S,(0,0,0).
@ 0 =1, a Sa$ is said to be standard.

o X =(Xi,...,X,) is a symmetric stable random vector if
any linear combination of the components of X is symmetric
a-stable (a € (0, 2]).

o {X(t),t € T} is symmetric stable if all of its
finite-dimensional distributions are symmetric stable.
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Settings and assumptions

@ Let X be a H — sssi, SaS random process (a € (0,2])
@ The increments of X with respect to a are defined by

LpnX =3 ax(P) (2)
k=0
° LetBGR,—%<B<O, set
1 n—K
Via(B) = n—K+1 Z |Ap,nX|B (3)
p=0
Wa(B) = n"H'Va(5) (4)

T l o Vn/2(ﬁ)
Hn - ,BI g2 Vn(ﬁ) (5)
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An estimator of «

o Let uyuv € Rsuchthat 0 < v < u.
® guv:(0,400) = R

guv(x)=uln(M(1+ vx)) —vin([(1+ ux)),

@ hy, :(0,400) = (—o0,0)

hU,V(X) = g,“,(l/x),
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An estimator of «

o ¢, :RT xRT - R
Yun(x,y) = —vinx + ulny + C(u, v),
_ 1—
C(u,v):u Vln7r+ulnl'(l+v/2)+vlnl'( u
1—v
)

)

—vinT(1+u/2)—ulnT(
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An estimator of «

o ¢, :RT xRT - R

Yuv(x,y) =—vinx+ulny + C(u,v),

C(u,v) = u;VIn7r+u|n|'(1+v/2)+v|n|'(1;u)
1—v
),

—vinT(1+u/2)—ulnT(

° ¢,y :R—[0,+00)

0, x>0
Puv(x) = { _

hu"l,(x)7 x <0
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Let B1, B2 GR,—l/Q < 1< B2 <.
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An estimator of «

Let 81,02 € R,—l/Q < 1< B2 <.
Let o, defined by

an = $P—PB1,—B2 (¢—61,—ﬁ2(vn(ﬁl), Vn(ﬁ2)))



Main results
00000®00000

Assumptions

Assumptions:
°

1

im = B By —

Jm 3T Jeor(18paX P 20aX) =0 (6)
PEZ,|p|<n



Main results
00000®00000

Assumptions

Assumptions:

o
o1
lim = Y Jeov(|ApaX]% [201X[P) =0 (6)

n—oo n
PEZ,|p|<n

@ There exists a sequence {bp, n € N}, “T b, = 0 such that
n——+00

. 1
limsup —= Y Jeov(|2p1X |7, |80 X|7) < C2, (7)
n—o00 nbn

PEZ,|p|<n

where C is a constant.
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1. Assume (6), then

. — (P . (P
lim H, (:) H, lim a, (:) Q.
n——+o0o n——+00
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Estimation of H and «

1. Assume (6), then

. — (P . (P
lim H, (:) H, lim a, (:) Q.
n——+o0o n——+00

2. Assume (7), then

—

Hn —H= O[P’(bn)ya\n —a= OIP’(bn)
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M: a SaS random measure (0 < v < 2) with Lebesgue
control measure.

X(t) = /R (It — s|H=3/2 — |s]H-Y2)M(ds)

with H € (0,1),H # 1/a.
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Examples

e Well-balanced linear fractional stable motions
M: a SaS random measure (0 < v < 2) with Lebesgue
control measure.

X(t) = /R (It — s|H=3/2 — |s]H-Y2)M(ds)

with H € (0,1),H # 1/a.

o Takenaka’s processes
teR,set G ={(x,r) eRx R, |x—t| <r}, S5 = CGAG.
M: a SaS random measure (0 < o < 2) with control measure

m(dx, dr) = r*2dxdr, (0 < v < 1).

X(t) = /}MR+ s, (x, YM(dx, dr)

The process X is v/a-sssi.
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Examples

Theorem 1 is true for

@ well-balanced linear fractional stable motions, with

n—1/2

aH—(l+1)x

b,=<n 4

Inn
n

JfH<L+1-2
JfH>L+1-2
JifH=L+1-2

(8)
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Examples

Theorem 1 is true for
@ well-balanced linear fractional stable motions, with

n~1/2 fH<L+1-2
aH—(L+1)a . 2
by,=<n 4 JfFH>L+1- 2 (8)

| . _ 2
\/ JfH=L+1-2

@ Takenaka's processes, with

by=n"7,v e (0,1) (9)
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Lévy motions

o Fractional Brownian motion is the unique, up to a constant,
centered Gaussian H-sssi process, with H € (0,1]. Its
covariance is given by

C
R(t,s) = —{IsI" + [t — s — ¢}
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CLT for fractional Brownian motions (o = 2) and Sa$S

Lévy motions

o Fractional Brownian motion is the unique, up to a constant,
centered Gaussian H-sssi process, with H € (0,1]. Its
covariance is given by

C
R(t,s) = —{IsI" + [t — s — ¢}

o {X(t),t> 0} with:
o X(0)=0as,
e has independent increments,
o X(t) = X(s) ~ Su((t —5)¥*,0,0) for any 0 < s < t < co and
O<a<?2
is called a SaS Lévy motion.
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CLT for fractional Brownian motions (a = 2), SaS Lévy
motions

Theorem 2

Let X be a fBm (or SaS-stable Lévy motion), then we have:
a)
lim H, = H, lim an=a

n—-+00 n—-+o0o

b)ﬁ(ﬂ; — H) converges in distribution as n — 400, to a centered
Gaussian variable.
c)v/n(a, — a) converges in distribution as n — 400, to a centered
Gaussian variable.

v
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@ H-sssi, SaS-stable random fields
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Settings

e a=(ap,...,ak), forq=0,...,L,
K K
> Kla=0,> kMla #£0
k=0 k=0

o p=(p1,...,pq) €N p;=0,...,K,

ap = ap, ---ap,
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Main results

e a= (ao,
°o p=(p1,---
o k:(kl,..

...,ak), forg=0,...,L,

K K
> Kla=0,> kMla #£0
k=0 k=0

7Pd)€NdaPi:07--->Ka

ap=ap, ...apy

.,kd) GNd,

K

AgnX = > apX(

p=(p1,---,Pd),Pi=0

k+p
n

)



Main results
00®000

Settings

o Fix —1/2< 3 <0, let

1
VilB) = ok e AaXP
(n— K+ 1)d k_(k17._z,;;d),k,_o
Wa(8) = n’"V,(8)
I/-/\ 7| og, n/2(5)

Va(B)



in results
00®000

Settings

e Fix —1/2 < <0, let

_ 1 = 5
ValB) = (n—K+1)4 k_(kl,..z,k:d),k -0 BnX
Wa(B) = nﬁ”v w(B)
= oy

e Fix —1/2< p1 < fpr <O

Qp = P—B1,—p2 (1/}—/31,—,32(\/17(/61)7 Vi(62)))
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Estimation of H and «

Asumptions:

1

b ; 8y| _

Jim = E )COV(|AI<,1X| D01 X17)| =0,
k:(kl,...,kd)EZd,IkiISH

(10)
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Estimation of H and «

Asumptions:

1

b ; 8y| _

Jim = § )COV(IAMXI Do X )’ =0,
k:(kl,...,kd)EZd7|ki|§n

(10)

@ There exists a sequence {b,, n € N} and a constant C such
that nEToo by =0, b,/» = O(by) and
1
im —— B B 2
i i 3 [cov(|AkaXI?, [801X17)| < €2,
k=(ky,...kq)€Z,|ki|<n

(11)
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1. Assume (10), then

. — (P . (P
lim H, (:) H, lim a, (:) Q.
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Estimation of H and «

1. Assume (10), then

. — (P . (P
lim H, (:) H, lim a, (:) Q.
n——-00 n——+00

2. Assume (11), then l;T ﬁn(ﬁ) =H,(P),

—

H,—H= O]P’(bn)7a\n —a= O]P’(bn)
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Theorem 3 is true for:

@ Lévy fractional Brownian field with
b, = n—d/2

@ Well-balanced linear fractional stable field with

nfd/2 , if w < —d
aH—(L+1)ad . _
bp=4n" & | if —d<2(ted g

/InTn if aH—(lé—i—l)ozd — _d
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Examples

Theorem 3 is true for:

@ Lévy fractional Brownian field with
by = n~9/?
@ Well-balanced linear fractional stable field with

n—d/2 if aH—(L2+1)ad < d

aH—(L+1)ad . _
bp=4n" & | if —d<2(ted g

/InTn if aH—(lé—i—l)ozd — _d

@ Takenaka random field with

bn:nZ
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Definition

Let 0 <a<2and H: U — (0,1) be an infinite differentiable
function on a closed interval U C R. Let

X(t) = /R (t — s|HO-Va _ |gHO-Yayp (ds)  (12)

where M, is a symmetric a-stable random measure on R which
control measure ds is Lebesgue measure.
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Definition

Let 0 <a<2and H: U — (0,1) be an infinite differentiable
function on a closed interval U C R. Let

X(t) Z/R(!t—S\H(t)l/a— 5|7V Ma(ds)  (12)

where M, is a symmetric a-stable random measure on R which
control measure ds is Lebesgue measure.
e 0 < a <2 X(t)is called a linear multifractional stable motion

e o =2, X(t) is called a multifractional Brownian motion
(M(du) is the standard Gaussian measure on R).
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Settings

o Let
i (k + p)
k=

o Let v be fixed such that

0 <limsupH(t) <vy<1.
teU

@ Define a set v, ,(u) and its cardinal by

k+p 1

U| § 7}7

Uyn(u)={ke€Z :Vp=0,....,K,|— pe

Uy,n(u) := #v4,n(u)
k
{¥,k€ vyn(u),p=0,...,K} C U.
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Settings

o Let B €(—1/2,0) be fixed and

Vu,n(ﬁ) = = Z |Ak,nX|B

U’%n(U) kEVy,n(u)

W, a(8) = nPHW Vv, (B).
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Settings

o Let B €(—1/2,0) be fixed and

_ 1 Vu,n/2(/8)

e Fix —1/2 < 1 < 2 <0,

Qp = P—p1,—B> (¢—ﬁ1,—5z(vu,n(61)v Vum(ﬁ2)))-
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Estimation of H and «

Let X be a linear multifractional stable motion or multifractional
Brownian motion. For u € U fixed, then

lim  Ha(u) = H(u), Ho(u) — H(u) = Op(dyn),dn — o = Op(dp)

n—-+o00
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Estimation of H and «

where d, is defined by

(*]
(" H(u) < L+1— 2, H(u) < v < 22
n2 Hu)<L+1—2 4> 2+2a+'-5“)
. HZEL(;)(I:‘()‘U) (L+1) H(u)>L+1- Ciwfy > L+2Lj_l%l(u) .
no H(u)=L+1— 2 H(u) <y < S552&
(n"2 /In(n) H(u):L—I—l—%’yZ(Lﬂlo){a

for linear multifractional stable motion

. aHW=y  f H(u) <~ < 1+2;:I(u)
" i > B2

for multifractional Brownian motion.
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Perspective

@ Improve results in case of multifractional stable motions?
@ Other mulfractional multistable processes?
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Thank you for your attention!
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(S, p): a measure space, f,g € L*(S, ), M: a Sa$S random
measure on S with control measure . Set

U= [ Fepmias). v = [ g(emids). U]z = |[VI]z =1,
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Sketch of proofs - Auxiliary lemmas

(S, p): a measure space, f,g € L*(S, ), M: a Sa$S random
measure on S with control measure . Set

U= [ Fepmias). v = [ g(emids). U]z = |[VI]z =1,

2B+1/2r(%)

/Sf(s)g(s)dsgn< 1,Cs = r(%ﬂ)
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Sketch of proofs - Auxiliary lemmas

o .
G5 [ Eel”

dy,
V2nm RMHﬁ Y

Cs:C EeIXU+IyV
B8 _ “B=B
EIUPIVE = 52 | e

E|UJ® =

in sense of distribution.
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Sketch of proofs - Auxiliary lemmas

o .
G5 [ Eel”

6 _
= Vo fe
Cs:C EeIXU+IyV
E|U|8| V|8 = =B ﬁ/ dxd
VI =" e ooty

in sense of distribution.

@ There exists a constant C(n) such that

lcov(1U2, |VIP)] < C(n) / 17(s)g(s)|*/2ds.
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Sketch of proofs - Auxiliary lemmas

Lemma 3
Let X be a standard SaS random variable with 0 < o < 2, let

—1 <~ <0 then
E[X|" < +o0,
moreover -
1\ - 2
E‘XP/_ (2)(’)/ a).
VTT(1 = 3)
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Sketch of proofs - Auxiliary lemmas

® g, is a strictly decreasing function on (0, +00) and

li = li = —00.
XTOgu,v(X) 07X_|>Toogu,v(x) oo
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Sketch of proofs - Auxiliary lemmas

® g, is a strictly decreasing function on (0, +00) and

lim gu.v(x) =0, lim g,,(x)=—oc.

x—0 x—>+

e hy, is a strictly increasing function on (0, +00) and

lim hy,,(x) =0, I|m hy,v(x) = —o0.

xX—>+00
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Sketch of proofs - Auxiliary lemmas

® g, is a strictly decreasing function on (0, +00) and

lim gu.v(x) =0, lim g,,(x)=—oc.

x—0 x—>+

e hy, is a strictly increasing function on (0, +00) and

lim hy,,(x) =0, I|m hy,v(x) = —o0.

xX—>+00

@ hy,, is invertible and hu » is continuous and differentiable on
(—00,0).
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° Y_g, g, (Wa(B1), Wa(B2)) converges in probability to
V-~ (Bl Do n X |7 E[ D01 X|%2) = hg, g, (a) as
n — 400.
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Sketch of proofs - Auxiliary lemmas

° Y_g, g, (Wa(B1), Wa(B2)) converges in probability to
V-~ (Bl Do n X |7 E[ D01 X|%2) = hg, g, (a) as
n — +o0.

® Y, —5,(Wn(B1), Wa(B2)) — h—p,,—,(e) = Op(bn).

® ¢©_p _B,0%_p _p, IS continuous at
Xo = (E’A071X|ﬁ1,E‘A071X|B2).
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