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Introduction

Questions:

estimate p := P(X ∈ A) and E(ϕ(X )|X ∈ A) when p < 10−5

sample from X |X ∈ A

compute sensitivity like
∂θE(ϕ(Xθ)1

Xθ∈A
)

E(ϕ(Xθ)1
Xθ∈A

)

Simple Monte Carlo: (Xn)n≥1 i.i.d. copies of X , by CLT

√
N(SN − P(X ∈ A))→ N(0, p(1− p))

where SN = 1
N

∑N
k=1 1{Xk∈A}

95% confidence interval: (SN − 1.96
√

p(1−p)
N ,SN + 1.96

√
p(1−p)

N )

But

√
p(1−p)√
Np

≈ 1√
Np

is large for small p, which means large relative error.
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Importance sampling

Classic technique: importance sampling

Example: X follows N(0, 1), to estimate P(X > 5), we define another
probability Q by

dQ
dP

(X ) = exp{aX − 1

2
a2}

under Q X follows N(a, 1), so with a = 5 and (Xn) i.i.d copies of N(5, 1)

P(X > 5) = EQ(1X>5
dP
dQ

) ≈ 1

N

N∑
n=1

1Xn>5
dP
dQ

(Xn)

Unfortunately, in general case, it’s not easy to design such a new
probability. When X is a complicated random system(stochastic process,
random matrix, random graph, etc), new techniques need to be found.
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Reformulation using conditional probabilities

Classic technique: importance sampling. However, in general it is difficult
to implement this method.

We define a series of nested subsets of the entire probability space S

S := A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An := A

P(X ∈ A) =
n∏

k=1

P(X ∈ Ak |X ∈ Ak−1)

Question: how to estimate P(X ∈ Ak |X ∈ Ak−1)?

Existing methods: splitting/restart, interacting particles system(IPS).
We propose an new method using the ergodicity of Markov chain
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Definition of shaking transformation

Definition: Given a random object X (variable, process, · · · ), K(·) is a
reversible shaking transformation for X if:

(X ,K(X ))
d
= (K(X ),X ). (1)

We also write K(X ) = K (X ,Y ), where K is deterministic and Y is
independent of X

Examples:

If X is a standard normal variable

K (X ,N(0, 1)) = ρX +
√

1− ρ2N(0, 1),−1 ≤ ρ ≤ 1

If X is a standard Brownian motion

K (X ,G ′) = (

∫ t

0

ρsdXs +

∫ t

0

√
1− ρ2sdG ′s)0≤t≤T
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Shaking with rejection and conditional invariance

Let k ∈ {0, 1, · · · , n − 1}, define the shaking with rejection MK
k by

MK
k (X ) =

{
K(X ) if K(X ) ∈ Ak

X if K(X ) /∈ Ak .
(2)

Proposition (conditional invariance)

Let k ∈ {0, 1, · · · , n − 1}. The distribution of X conditionally on
{X ∈ Ak} is invariant w.r.t. the random transformation MK

k : i.e. for any
bounded (random) measurable ϕ : S→ R, we have

E
(
ϕ(MK

k (X ))|X ∈ Ak

)
= E

(
ϕ(X )|X ∈ Ak

)
. (3)
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POP(Parallel One-Path) method

Birkhoff’s theorem for ergodic Markov chain (Zi )i≥0 with a unique
invariant distribution π:

1

N

N−1∑
i=0

f (Zi ) −→
N→+∞

∫
f dπ a.s.

Observation: the conditional invariance of MK
k with respect to X |X ∈ Ak

enables to use the ergodic property of Markov chain

Given an initial position Xk,0 ∈ Ak , we define Xk,i := MK
k (Xk,i−1)

E(ϕ(X )|X ∈ Ak) ≈ 1

N

N−1∑
i=0

ϕ(Xk,i )

With ϕ ≡ 1Ak+1
, P(X ∈ Ak+1|X ∈ Ak) ≈ 1

N

∑N−1
i=0 1Ak+1

(Xk,i )

Our estimators for each P(X ∈ Ak+1|X ∈ Ak) can be made independent!
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POP playing
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convergence POP

For all finite dimension cases, we can prove POP method converges
almost surely using a short proof for Markov chain’s ergodicity from
Asmussen and Glynn (2011)

For convergence rate( Latuszyński et al. (2013))

θ = π(f ), θ̂ =
1

N

N∑
i=1

f (Xi )

under some stronger assumptions, there exists constant C such that

E(θ̂ − θ)2 ≤ C

N

Gang Liu Rare event simulation 10 / 23
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Explicit shaking construction

If X is a standard normal variable

Kρ(X ,N(0, 1)) = ρX +
√

1− ρ2N(0, 1),−1 ≤ ρ ≤ 1

If X is a standard Brownian motion

Kρ(X ,G ′) = (

∫ t

0

ρsdXs +

∫ t

0

√
1− ρ2sdG ′s)0≤t≤T

Figure: Shaking N(0, 1) with ρ = 0.9 and ρ = 0.5
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Explicit shaking construction

For a Gamma distribution Ga ∼ Gamma(α, β), i.e

P(Ga ∈ dx) =
βα

Γ(α)
xα−1e−βxdx , x > 0

The transformation is (see Dufresne (1998))

K (Ga) = Ga ∗ Beta(α(1− p), αp) + Gamma(αp, β)

In particular, it applies for exponential variable with α = 1

Figure: Shaking Gamma(2.5, 0.12) with p = 0.1 and p = 0.5
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Shaking list

Poisson variable P ∼ P(λ): K(P) = Binomial(P, p) + P((1− p)λ)

Bernoulli variable B ∼ Bernoulli(q): qP(1, 0) = (1− q)P(0, 1)

Y
d
= f (X ) =⇒ KY (·) = f (KX (f −1(·)))

Uniform U: − lnU
d
= Exp(1)

Cauchy C: 1
π arctan(C ) + 1

2 is uniform

χ2(k) Rk : Rk
d
= 2Gamma( k

2 , 1)

Other shakings

if Y = f (X1,X2, · · · ,Xn), shake Y through shaking all the Xi ’s

Metropolis-Hasting Gibbs type shaking

Given a large number of r.v.’s, we can also only shake a randomly
sampled part of them

Gang Liu Rare event simulation 13 / 23
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Shaking transformation for stochastic process

Compound Poisson process: Let Xt =
∑Nt

k=1 Yk be a CPP(λ, µ)

CPP decomposition: Xt = X a
t + X b

t

where X a d
= CPP((1− p)λ, µ) and X b d

= CPP(pλ, µ)

K (X ,Z ) = (X a
t + Zt)0≤t≤T ,Zt

d
= CPP(pλ, µ)

Let Y be a pure jump process with inter-arrival (An)n≥1 and
(Bn)n≥1, shake all the An’s and Bn’s =⇒ shake Y .

Conditional shaking, keep inter-arrival (An)n≥1, only shake (Bn)n≥1.

Others possibilities: To shake a Levy process for exampke, we can apply
shaking transformations for the underlying Brownian motion and
compound Poisoon process.

Gang Liu Rare event simulation 14 / 23
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Adaptive POP method

Question: How to choose the values of intermediary levels?

In case that no additional information is available about the model, we
can choose our nested subset on the run, i.e. in an adaptive way.

We propose an adaptive version of POP method and prove it converges
almost surely.
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Adaptive POP playing with 50% quantile
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Extreme scenario generation and sensitivity

Extreme scenario generation: recall the Markov chain defined by

Xk,0 ∈ Ak ,Xk,i := MK
k (Xk,i−1)

we have ‖L(Xk,i )− X |X ∈ Ak‖TV → 0

Sensitivity: by likelihood method or Malliavin calculus, there exists some
φ such that

∂θE(ϕ(X θ)1Xθ∈A)

E(ϕ(X θ)1Xθ∈A)
=

E(φ1Xθ∈A)

E(ϕ(X θ)1Xθ∈A)
=

E(φ|X θ ∈ A)

E(ϕ(X θ)|X θ ∈ A)

which can be evaluated using only one Markov chain
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Oscillation of Orstein-Ulhenbeck process

dYt = λ(µ− Yt)dt + σdWt ,Y0 = 0, λ = 1, µ = 0, σ = 1,T = 1

P( max
0≤l≤100

Ỹtl > 1.6 and min
0≤l≤100

Ỹtl < −1.6)

7× 109 MC simulation gives [3.9709, 4.3691]× 10−7

Set Li = 1.6 ∗ ( i
5 )1/2 and Ai = ( max

0≤l≤100
Ỹtl > Li and min

0≤l≤100
Ỹtl < −Li )

100 runs for each parameter:

IPS: M = 105

mean std std/mean
ρ = 0.9 4.01e-07 1.23e-07 0.31
ρ = 0.75 4.10e-07 1.67e-07 0.41
ρ = 0.5 2.44e-07 4.76e-07 1.95

POP: N = 105

mean std std/mean
ρ = 0.9 4.14e-07 2.68e-08 0.06
ρ = 0.75 4.18e-07 4.60e-08 0.11
ρ = 0.5 4.29e-07 1.26e-07 0.29
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Oscillation of Orstein-Ulhenbeck process

Figure: Variance for two methods
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Model misspecification and robustness

Real world: σ+ when spot is lower than past M-4, σ− in the other case.

Trader thinks it’s a constant volatility σ−, hedging the payoff (ST − K )+
with BS. With T = 1, S0 = 10, σ− = 0.2, σ+ = 0.27 K = 10 and
L = −2.4, what is the probability that the trader’s P&L is less than L?

The crude Monte Carlo method with 5× 108 simulations provides a 99%
confidence interval [2.93, 3.34]× 10−6.
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Model misspecification and robustness

M = N = 105:
with prefixed intermediary levels Lk = k

5 ∗ L, k = 1, 2, 3, 4, 5
IPS POP

mean std. std./mean mean std. std./mean
(×10−6) (×10−7) (×10−6) (×10−7)

ρ = 0.9 3.10 5.29 0.17 3.13 2.07 0.07
ρ = 0.7 3.23 13.3 0.41 3.11 3.98 0.13
ρ = 0.5 2.79 25.9 0.93 3.18 8.44 0.27

adaptive methods:
IPS POP

mean std. std./mean mean std. std./mean
(×10−6) (×10−7) (×10−6) (×10−7)

ρ = 0.9 3.06 4.95 0.16 3.18 2.42 0.08
ρ = 0.7 2.98 11.1 0.37 3.10 3.71 0.12
ρ = 0.5 2.45 23.6 0.96 3.06 7.27 0.24
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Typical scenario leading to large hedging loss
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Figure: Typical paths of the underlying stock price which lead to large hedging
loss
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Thank You
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