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Graph : G = (V(G),E(G))

Dimer configuration
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Edges of G are assigned a positive weight function c(e).

The dimer Boltzmann measure of a dimer configuration M is :

P(M) =

∏
e∈M c(e)

Z

Z =
∑

M∈M(G)

∏
e∈M

c(e).
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The limit shape of dimer configurations for bounded planar graph.

By Cohn By Linde, Moore and Nordahl
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Height function of a dimer configuration on bipartite graph.

On a Temperley graph, one definition of the height function is by
turning angle.
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On torus, this induces a height change (hM
x , h

M
y ).
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Kenyon, Okounkov, Sheffield (2003) :

On a toroidal bipartite graph, choose a path γx (resp. γy) on the
dual of the graph winding once horizontally (resp. vertically).

By adding a magnetic field B = (Bx,By), we mean multiplying
the edges crossing γx by eBx if the black vertex is on the left of γx

and by e−Bx if on the right of γx. Same for edges crossing γy.

The modification of the weight of a configuration caused by B
only depends on its height change.

Let G be a periodic bi-partite graph and Gn = G/(nZ)2. Dimer
measures on Gn converge to an ergodic Gibbs measure µ with
slope (s, t).

By varying B, we get measures of all possible slopes.
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Primal graph, dual graph and double graph

Primal graph G
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Primal graph, dual graph and double graph

Dual graph G∗
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Primal graph, dual graph and double graph

Double graph Gd
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Weight setting of a double graph Gd (Temperley Graph)

c(uv)

u

v

c(vu)

Weights of G

u

vw
c(uw) c(vw)

Weights of Gd

In the figure above, we set c(uv) = c(uw), c(vu) = c(vw), and edges
of G∗ are of weight 1.
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Temperley’s bijection on planar graph (Temperley 1974,
Kenyon, Propp, Wilson 2000)

v0

Primal tree T

f0

Dual tree T∗
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Temperley’s bijection on planar graph (Temperley 1974,
Kenyon, Propp, Wilson 2000)

Graph Gd(v0, f0) Dimer configuration
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Temperley’s bijection on toroidal graph : oriented cycle rooted
spanning forest (CRSF)

Oriented CRSF Dimer configuration on Gd
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The measure of oriented spanning tree pair T,T∗ (resp. oriented
CRSF pair (F,F∗)) :

P(T,T∗) =

∏
~e∈T c(~e)

∏
~e∗∈T∗ c(~e∗)

ZT (G,G∗)

P(F,F∗) =

∏
~e∈F c(~e)

∏
~e∗∈F∗ c(~e∗)

ZF(G,G∗)

By summing over all possible duals, the second one gives a
measure of oriented CRSF of G.
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Theorem (Pemantle 1991)

The uniform spanning tree measures on Zd⋂[−n, n]2 converge
weakly as n→∞. When d ≤ 4, the limiting measure is supported a.s.
by spanning trees. When d ≥ 5 the spanning forest has a.s. infinitely
connected components.

Result generalized by Benjamini, Lyons, Peres and Schramm for
non-oriented planar graphs.
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How about the oriented CRSF measure ? Consider a Z2-periodic
oriented graph G, and let Gn = G/(nZ)2, Gd

n = Gd/(nZ)2.

Convergence of the oriented CRSF measure on Gn is clear by the
corresponding results in the dimer model.

Height function of a dimer configuration↔ winding along a path
+ jumps + reversions. So the height change of a configuration is
equal to the signed sum of the homology class of corresponding
oriented CRSF pair.
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The Laplacian associated to a connection Φ is the operator
∆Φ : CV → CV defined by

∆Φf (v) =
∑
u∼v

cvu(f (v)− φuvf (u)).

A decomposition ∆Φ = d∗d, where

df (~e) = φvef (v)− φv′ef (v′),

d∗(ω)(v) =
∑
~e=v′v

cvv′φevω(~e).

Magnetic field B on Gd ↔ connection Φ on G.
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Define C0(Z2) as the space of Gd
1-vector-valued functions decaying at

infinity, and define CB
0 (Z2) as its (magnetic field B) modified version :

CB
0 (Z2) := {f : Z2 → Gd

1 : exBy+yBx f (x, y; v) ∈ C0(Z2)}.

Theorem
The measure µ is a determinantal process, whose kernel is the unique
infinite matrix A such that every row Ae ∈ CB

0 (Z2) and A∆Φ = d.
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When the slope is non-zero,

Theorem
When the slope of the limiting dimer measure is non-zero, then under
µ, there are a.s. infinitely many connected components.

There are infinite bands. Conditioned on the boundaries of bands, the
interiors are weighted spanning forests.
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When the slope is zero ?

Lemma

In the phase diagram of the dimer measure of Gd, the point B = (0, 0)
always corresponds to a zero slope.

Same slope↔ same measure.

When B = (0, 0), we can approach the CRSF measures by
spanning tree measures on planar graph, and Wilson’s algorithm
characterize the properties of spanning trees.
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Let Gn = G/(nZ2) and Gn = G
⋂

[−n, n]2.

Consider the wired spanning tree measure on Gn.

If it converges when n→∞ and its kernel decays at infinity,
then by the theorem of the uniqueness, this is the same measure
as µ. This is equivalent to the convergence and decay of

(AN)w,v = E
[
#RWGN

v2
visits v−#RWGN

v1
visits v

]
The condition above is denoted by (?). It is verified by graphs
transient, graphs non-oriented, ect.

Theorem
Let G be a graph verifying the condition (?). When the slope of the
limiting dimer measure is zero, then the CRSF measures on Gn and
wired spanning tree measure on Gn converge to the same measure µ.
Under µ, there is a.s. one connected spanning tree.
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Phase diagram

B

B

x

y

Connected

Disconnected
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Thank you for your attention
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