Thin points of a class of Markov processes with jumps

Xiaochuan YANG, Université Paris-Est

joint work with S. Seuret (Créteil, France)

CJPS

Houches, 21/4/2016

1/13

Basic problem

Question : regularity ?

Basic problem

- $X = \{X_t, t \in [0, 1]\}$ in \mathbb{R}^d .
- $\mu(A) = \int_0^1 \mathbf{1}_A(X_t) dt$ for all $A \subset \mathbb{R}^d$.

Question : regularity ?

- Absolutely continuity (local times when X is Markovian).
- ▶ Local dimensions, i.e. for $x \in \text{supp}(\mu)$, the positive real h such that

$$\mu(B(x,r)) \sim r^h.$$

- ► Always well defined, i.e. $\lim_{r\to 0} \frac{\ln \mu(B(x,r))}{\ln r}$ exists?
- How does h depend on the value x? study a regularity exponent h(x).

Examples

- B : Brownian motion in $\mathbb{R}^d.$
 - ▶ d = 1: local times exist [Lévy].
 - ▶ $d \ge 2$: local dimension is 2 for all $x \in \text{supp}(\mu)$ [Perkins-Taylor].

Examples

- B : Brownian motion in $\mathbb{R}^d.$
 - ▶ d = 1 : local times exist [Lévy].
 - ▶ $d \ge 2$: local dimension is 2 for all $x \in \text{supp}(\mu)$ [Perkins-Taylor].
- $\sigma:\alpha\text{-stable subordinator, i.e.}$ increasing stable Lévy process in $\mathbb{R}^+.$
 - ▶ Local dimension is α for μ -almost every $x \in \text{supp}(\mu)$ [Hu-Taylor].

・ロン ・四 と ・ 日 ・ ・ 日 ・

• Exceptional points? Yes.

Framework : multifractal analysis

Goal : distinguish different local behaviors of μ by a description of the "size" of the set of points with given regularity.

Definition

The upper local dimension of μ at x is defined by

$$\overline{h}(\mu, x) = \limsup_{r \to 0} \frac{\ln \mu(B(x, r))}{\ln r}.$$

4/13

One defines similarly the lower local dimension $\underline{h}(\mu, x)$ and local dimension $h(\mu, x)$ when the limit exists.

Definition

Define the iso-holder sets

$$\overline{E}(h) = \{ x \in \operatorname{supp}(\mu) : \overline{h}(\mu, x) = h \}.$$

The upper multifractal spectrum of μ is the mapping

 $\overline{d}_{\mu}(\cdot): h \mapsto \dim_{\mathcal{H}} \overline{E}(h).$

One defines similarly $\underline{d}_{\mu}(\cdot)$ and $d_{\mu}(\cdot)$.

"Recall" : Hausdorff dimension describes the size of "small" sets in a metric space, e.g. a triadic Cantor set in \mathbb{R}^1 .

(ロ) (部) (目) (日) (日) (の)

Thin points for α -stable subordinator

Recall local dimension exists for typical points : $h(\mu, x) = \alpha$ for μ -almost every point in supp μ , i.e.

$$\mu(B(x,r)) \sim r^{\alpha}.$$

However, there are "many" points with smaller than normal mass, i.e.

$$\mu(B(x,r)) \sim r^h \text{ with } h > \alpha.$$

These points are called thin points.

Theorem (Hu-Taylor)

A.s. the following holds

$$\overline{d}_{\mu}(h) = \begin{cases} \alpha(\frac{2\alpha}{h} - 1) & \text{ if } h \in [\alpha, 2\alpha], \\ -\infty & \text{ otherwise.} \end{cases}$$

Our process : stable-like jump diffusion

- ► **Goal** : describe thin points of jump diffusions (i.e. jumping SDE) by multifractal analysis.
- ► **Difference/Difficulty :** no more stationary increment, Markovian dynamic is space-dependent.

Definition (Bass)

 $The \ stable-like \ jump \ diffusion \ is \ a \ Markov \ processes \ with \ generator$

$$\mathcal{L}f(x) = \int_0^1 f(x+u) - f(x)\frac{du}{u^{1+\beta(x)}}$$

where β is a Lipschitz function taking value in $[\varepsilon, 1 - \varepsilon]$.

Remark : when $\beta(\cdot) = \alpha \in (0, 1)$, one recovers α -stable subordinator (truncated large jumps).

The stable-like jump diffusion satisfies the jumping SDE

$$M_t = \int_0^t \int_0^1 z^{1/\beta(M_{s-1})} N(ds, dz).$$

where N(ds, dz) is a Poisson random measure with intensity $\pi(dz) = dz/z^2$.

Remind : dimension of the sets $\overline{E}(h) = \{x \in \text{supp}(\mu) : \overline{h}(\mu, x) = h\}$. Need a translation!

Preparation I : heuristic computation

As $t \in \overline{E}(h)$, necessarily

$$\mu(B(M_t, r_n)) \le r_n^{h-\varepsilon}, \text{ for } r_n \to 0.$$

 $\mu(\cdot)$ measures the time spent by M inside balls, last inequality means M can not move too slowly, precisely, infinitely often

$$|M_{t+2^{-n}} - M_t| \wedge |M_t - M_{t-2^{-n}}| \ge 2^{-n/((h-\varepsilon)\beta(M_t))}.$$

イロト イロト イヨト イヨト 三日

Need estimate for increments.

Preparation II : a key estimate

Proposition

For all $\delta > 1$, $m \in \mathbb{N}^*$, with probability larger than $1 - e^{-m}$, for $|t - s| \sim 2^{-m}$,

$$\left| \int_{s}^{t} \int_{0}^{2^{-\frac{m}{\delta}}} z^{1/\beta(M_{u-})} N(du, dz) \right| \leq \log\left(\frac{1}{|s-t|}\right)^{2} |s-t|^{\frac{1}{\delta \cdot \beta_{s,t}^{m}}}$$

with $\widehat{\beta}_{s,t}^{m} \approx \sup_{u \in [s,t]} \beta(M_{u-}).$

Remark : uniformly, small jumps accumulation has the same effect of a single jump.

So there are two "large" jumps beside $t\in \overline{E}(h)$ for infinitely many time scales.

Highlight double jumps configuration in the Poisson point process gives an upper bound for $\dim_{\mathcal{H}} \overline{E}(h)$.

Lower bound is more involved.

Multifractal spectrum

Theorem (16' Seuret and Y.)

A.s. the upper multifractal spectrum of μ is

イロト イロト イヨト イヨト 三日

12/13

Remark : superposition of random curves.

Merci de votre attention !

