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Basic problem

> X = {X,,t €[0,1]} in R<.

> (A) = [ 1a(X,)dt for all A C R

Question : regularity ?
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Basic problem

» X ={X,,te[0,1]} in R%
> (A) = [ 1a(X,)dt for all A C R

Question : regularity ?

» Absolutely continuity (local times when X is Markovian).

» Local dimensions, i.e. for x € supp(u), the positive real h such
that
w(B(z,r)) ~ rh.

» Always well defined, i.e. lim,_o w exists ?

» How does h depend on the value 27 study a regularity exponent
h(x).
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Examples

B : Brownian motion in R<.
» d =1 :local times exist [Lévy].

» d > 2 : local dimension is 2 for all € supp(u) [Perkins-Taylor].



Examples

B : Brownian motion in R<.
» d =1 :local times exist [Lévy].

» d > 2 : local dimension is 2 for all € supp(u) [Perkins-Taylor].

o : a-stable subordinator, i.e. increasing stable Lévy process in RT.
» Local dimension is « for p-almost every = € supp(u) [Hu-Taylor].

» Exceptional points? Yes.



Framework : multifractal analysis

Goal : distinguish different local behaviors of u by a description of
the “size” of the set of points with given regularity.

Definition

The upper local dimension of p at x is defined by
. In p(B(z, )

h(p,x) = hmj(l)lp o

One defines similarly the lower local dimension h(u,x) and local
dimension h(u,x) when the limit exists.



Definition
Define the iso-holder sets

E(h) = {x € supp(p) : h(p, x) = h}.
The upper multifractal spectrum of u is the mapping
d,(+) + h dimy E(h).
One defines similarly d,,(-) and dy,(-).

“Recall” : Hausdorff dimension describes the size of “small” sets in a
metric space, e.g. a triadic Cantor set in R!.



Thin points for a-stable subordinator

Recall local dimension exists for typical points : hA(u, x) = « for
p-almost every point in supp u, i.e.

w(B(z,r)) ~r*.
However, there are “many” points with smaller than normal mass, i.e.
w(B(z,r)) ~ " with b > a.
These points are called thin points.

Theorem (Hu-Taylor)
A.s. the following holds

du(h) = {a(%"‘ —1) ifhe€a,2q],

—00 otherwise.



Our process : stable-like jump diffusion

» Goal : describe thin points of jump diffusions (i.e. jumping SDE)
by multifractal analysis.

» Difference/Difficulty : no more stationary increment,
Markovian dynamic is space-dependent.

Definition (Bass)

The stable-like jump diffusion is a Markov processes with generator

d
/,fx+“ $@) irae

where 3 is a Lipschitz function taking value in [,1 — €.

Remark : when 3(-) = o € (0,1), one recovers a-stable subordinator
(truncated large jumps).



The stable-like jump diffusion satisfies the jumping SDE

t 1
Mt:/ / ZHPMo) N (ds, dz).
0 Jo

where N(ds,dz) is a Poisson random measure with intensity
7(dz) = dz/22.

Remind : dimension of the sets E(h) = {z € supp(p) : h(u, x) = h}.
Need a translation!



Preparation I : heuristic computation

As t € E(h), necessarily
w(B(My,ry)) < ¢, for r, — 0.

1(+) measures the time spent by M inside balls, last inequality means
M can not move too slowly, precisely, infinitely often

| My g-n — My| A | My — My_g—n| > 277/ (h=9)B0M))

Need estimate for increments.



Preparation II : a key estimate

Proposition

For all § > 1, m € N*, with probability larger than 1 —e=™, for

[t —s| ~27™,
t 2% 1 2 2
/ / 2B M) N (du, dz)| <log | —— | |s —t|*7%
s JO |S - t|

with E:”f ~ sup B(M,-).
! u€[s,t]

Remark : uniformly, small jumps accumulation has the same effect
of a single jump.
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So there are two “large” jumps beside ¢ € E(h) for infinitely many
time scales.

Highlight double jumps configuration in the Poisson point process
gives an upper bound for dimy E'(h).

Lower bound is more involved.



Multifractal spectrum

Theorem (16’ Seuret and Y.)

A.s. the upper multifractal spectrum of u is

@

M)

Remark : superposition of random curves.
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Merci de votre attention!
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